The sourdough microflora Microbiological, biochemical and breadmaking characteristics of doughs fermented with freeze-dried mixed starters, freeze-dried wheat sourdough and mixed fresh-cell starters

  • L. Cossignani
  • M. Gobbetti
  • P. Damiani
  • A. Corsetti
  • M. S. Simonetti
  • G. Manfredi
Original Paper

Abstract

Freeze-dried mixed starters, freeze-dried wheat sourdough and mixed fresh-cell starters made withLactobacillus sanfrancisco CBI,L. plantarum DC400 andSaccharomyces cerevisiae 141 and/orS. exiguus M14 were used for leavening wheat doughs, and their microbiological, biochemical and breadmaking characteristics were compared with those of Italian traditional doughs produced by baker's yeast. All the doughs fermented with starters had more balanced microbiological and biochemical characteristics than dough started with baker's yeast in which alcoholic fermentation end-products largely predominated. By using starters, the greatest lactic acid bacteria cell number and acetic acid production, were achieved, along with more complete profiles of volatile compounds and greater structural stability of fermented doughs. Fresh-cell starters showed higher microbial functionality and represented the only way to enrich the doughs withS. exiguus M14, some of which survived the freeze-drying process. No differences were detected between the two different types of freeze-dried starters and the subsequent use (10 times) of doughs initially produced with freezedried starters eliminated initial differences in the microbial functionality with respect to fresh-cell starters.

Key words

Lactic acid bacteria Yeasts Sourdough Starters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres C (1984) Food Process 4: 66–67Google Scholar
  2. 2.
    Guseva VI, Nosova RI, Buinyakova TL, Bogatyreva TG, Pochevskaya LS, Sharova OF (1980) Khebopek Konditers Promysh 10: 28–30Google Scholar
  3. 3.
    Sozontova TM, Lopatin VF, Vasin MI, Dudoladova LS (1980) Khlebopek Konditers Promysh 2: 19–20Google Scholar
  4. 4.
    Vitavskaya AV, El'tsova OP, Orlyuk TM, Matveev AI, Kuzntetsov SM (1980) Khlebopek Konditers Promysh 12: 19–21Google Scholar
  5. 5.
    Sugihara TF (1978) J Food Prot 41: 977–979Google Scholar
  6. 6.
    El-Megeed MEA, Sands DC (1986) European Patent 0191408Google Scholar
  7. 7.
    Wlodarczyk M (1985) Acta Aliment Pol XI: 345–359Google Scholar
  8. 8.
    Spicher G (1994) Dtsch Lebensm Rundsch 6: 177–180Google Scholar
  9. 9.
    Barber S, Torner MJ, Martinez-Anaya MA, Benedito de Barber C (1989) Z Lebensm Unters Forsch 189: 6–11Google Scholar
  10. 10.
    Faid M, Boraam F, Zyani I, Larpent JP (1994) Z Lebensm Unters Forsch 198: 287–291Google Scholar
  11. 11.
    Barber S, Bàguena R, Benedito de Barber C, Martinez-Anaya MA (1991) Z Lebensm Unters Forsch 192: 46–52Google Scholar
  12. 12.
    Martinez-Anaya MA, Pitarch B, Gonzalez FJ, Benedito de Barber C (1993) Revista Española de Ciencia y Tecnologia de Alimentos 33: 491–500Google Scholar
  13. 13.
    Wlodarczyk M, Jezynska B, Warzywoda A (1993) Pol J Food Nutr Sci 2: 33–41Google Scholar
  14. 14.
    Martinez-Anaya MA, Pitarch B, Benedito de Barber C (1993) Z Lebensm Unters Forsch 196: 360–365Google Scholar
  15. 15.
    Vollmar A, Meuser F (1992) Cereal Chem 69: 20–27Google Scholar
  16. 16.
    Javanainen P, Linko YY (1993) J Cereal Sci 18: 171–185Google Scholar
  17. 17.
    Hino A, Takano H, Tanaka Y (1987) Cereal Chem 64: 269–275Google Scholar
  18. 18.
    Gobbetti M, Corsetti A, Rossi J, La Rosa F, De Vincenzi S (1994) Ital J Food Sci 1: 85–94Google Scholar
  19. 19.
    Gobbetti M, Corsetti A, Rossi J (1994) World I Microbiol Biotechnol 10: 275–279Google Scholar
  20. 20.
    Gobbetti M, Corsetti A, Rossi J (1995) World J Microbiol Biotechnol 11: 625–630Google Scholar
  21. 21.
    Gobbetti M, Corsetti A, Rossi J (1994) Appl Microbiol Biotechnol 41: 456–460Google Scholar
  22. 22.
    Gobbetti M, Corsetti A, De Vincenzi S (1995) Ital J Food Sci 2: 91–102Google Scholar
  23. 23.
    Gobbetti M, Corsetti A, De Vincenzi S (1995) Ital J Food Sci 2: 103–112Google Scholar
  24. 24.
    Damiani P, Gobbetti M, Cossignani L, Corsetti A, Simonetti MS, Rossi J (1995) Lebensm Wiss Technol (in press)Google Scholar
  25. 25.
    Gobbetti M, Smacchi E, Fox PF, Stepaniak L, Corsetti A (1996) Lebensm Wiss Technol (in press)Google Scholar
  26. 26.
    Kline L, Sugihara TF (1971) Appl Microbiol 21: 459–465PubMedGoogle Scholar
  27. 27.
    Holmes JT, Hoseney RC (1987) Cereal Chem 64: 348–351Google Scholar
  28. 28.
    Tamine AY, Robinson RK (1985) Yoghurt science and technology. Pergamon, OxfordGoogle Scholar
  29. 29.
    Gobbetti M, Simonetti MS, Corsetti A, Santinelli F, Rossi J, Damiani P (1995) Food Microbiol 12: 497–507Google Scholar
  30. 30.
    Oda Y, Uno K, Ohta S (1986) Appl Environ Microbiol 52: 941–943Google Scholar
  31. 31.
    Neyreneuf O, Van Der Plaat JB (1991) Cereal Chem 68: 60–66Google Scholar
  32. 32.
    Hébert C, Roux-Salembien P, Egly JM (1993) Biofutur 128: 3–11Google Scholar
  33. 33.
    Spicher G (1983) Biotechnology 5. VCH, WheinheimGoogle Scholar
  34. 34.
    Spicher G (1964) Zbl Bakt 118: 453–471Google Scholar
  35. 35.
    Barber S, Torner MJ, Martinez-Anaya MA, Benedito de Barber C (1988) Rev Agroquim Technol Aliment 28: 79–89Google Scholar
  36. 36.
    Sugihara TF, Kline L, Mc Cready LB (1970) Bakers Dig 44: 51–56Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Cossignani
    • 1
  • M. Gobbetti
    • 2
  • P. Damiani
    • 1
  • A. Corsetti
    • 2
  • M. S. Simonetti
    • 1
  • G. Manfredi
    • 2
  1. 1.Institute of Food ChemistryPerugiaItaly
  2. 2.Institute of Dairy MicrobiologyPerugiaItaly

Personalised recommendations