Geometriae Dedicata

, Volume 58, Issue 2, pp 203–212 | Cite as

Smooth projective translation planes

  • Joachim Otte
Article

Abstract

A projective plane is called smooth if both the point space and the line space are smooth manifolds such that the geometric operations are smooth. We prove that every smooth projective translation plane is isomorphic to one of the classical planes over ℝ, ℂ, ℍ or\(\mathbb{O}\).

Mathematics Subject Classification (1991)

51H25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betten, D.: 2-dimensionale differenzierbare projektive Ebenen,Arch. Math. 22 (1971), 304–309.Google Scholar
  2. 2.
    Bredon, G. E.:Introduction to Compact Transformation Groups, Academic Press, New York, 1972.Google Scholar
  3. 3.
    Breitsprecher, S.: Einzigkeit der reellen und der komplexen projektiven Ebene,Math. Z. 99 (1967), 429–432.Google Scholar
  4. 4.
    Breitsprecher, S.: Projektive Ebenen, die Mannigfaltigkeiten sind,Math. Z. 121 (1971), 157–174.Google Scholar
  5. 5.
    Breuning, P.: Translationsebenen und Vektorraumbündel,Mitt. Math. Sem. Giessen 86 (1970).Google Scholar
  6. 6.
    Dieudonné, J.:Foundations of Modern Analysis, Academic Press, New York, 1960.Google Scholar
  7. 7.
    Grundhöfer, T. and Hähl, H.: Fibrations of spheres by great spheres over division algebras and their differentiability,J. Differential Geom. 31 (1990), 357–363.Google Scholar
  8. 8.
    Grundhöfer, T. and Salzmann, H.: Locally compact double loops and ternary fields, Chap. XI of: O. Chein, H. Pflugfelder, J. Smith (eds),Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990, pp. 313–355.Google Scholar
  9. 9.
    Grundhöfer, T. and Strambach, K.: Die affinen Projektivitätengruppen der lokalkompakten zusammenhängenden Translationsebenen,Arch. Math. 47 (1986), 274–278.Google Scholar
  10. 10.
    Hsiang, W. Y.: On the classification of differentiable SO(n, ℝ)-actions on simply connected π-manifolds,Amer. J. Math. 88 (1966), 137–153.Google Scholar
  11. 11.
    Hsiang, W. Y.: On the bound of the dimension of the isometry groups of all possible riemannian metrics on an exotic sphere,Ann. Math. 85 (1967) 351–358.Google Scholar
  12. 12.
    Hsiang, W. C. and Hsiang, W. Y.: Differentiable actions of connected classical groups I,Amer. J. Math. 89 (1967), 705–786.Google Scholar
  13. 13.
    Kramer, L.: The topology of smooth projective planes,Arch. Math. 63 (1994), 85–91.Google Scholar
  14. 14.
    Otte, J.: Differenzierbare Ebenen, Dissertation, Kiel, 1992.Google Scholar
  15. 15.
    Porteous, I.:Topological Geometry, Cambridge Univ. Press, 1981.Google Scholar
  16. 16.
    Salzmann, H.: Topological planes,Adv. Math. 2 (1967), 1–60.Google Scholar
  17. 17.
    Skornjakov, L. A.: Topological projective planes (Russian),Trudy Moskov Mat. Obšč. 3 (1957), 347–373.Google Scholar
  18. 18.
    Spivak, M.:Differential Geometry I, Publish or Perish, Berkeley, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Joachim Otte
    • 1
  1. 1.Mathematisches SeminarUniversität KielKielGermany

Personalised recommendations