Advertisement

Geometriae Dedicata

, Volume 53, Issue 2, pp 119–131 | Cite as

Immobilization of smooth convex figures

  • J. Bracho
  • L. Montejano
  • J. Urrutia
Article

Abstract

We establish a curvature criterion to decide whether three points immobilize a plane convex figure with smooth boundary. Then we use it to prove in the affirmative the convex case of Kuperberg's Conjecture. Namely, we prove that any convex figure with smooth boundary, different from a circular disk, can be immobilized with three points.

Mathematics Subject Classification (1991)

52A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bracho, J., Mayer, D., Fetter H. and Montejano, L.: Immobilization of solids and mondriga quadratic forms,J. London Math. Soc. (to appear).Google Scholar
  2. 2.
    Czyzowicz, J., Stojmenovic, I. and Urrutia, J.:Immobilizing a Shape, RR90/11–18, Department d'informatique, Université du Quebec à Hull, 1990.Google Scholar
  3. 3.
    Hilbert, D. and Cohn-Vossen, S.:Geometry and Imagination, Chelsea Publishing Company, New York, 1952.Google Scholar
  4. 4.
    Kuperberg, W.:DIMACS Workshop on Polytopes, Rutgers University, Jan. 1990.Google Scholar
  5. 5.
    Markenscoff, X., Ni, L. and Papadimitriou, Ch. H.: Optimal grip of a polygon,Int. J. Robotics Research 8(2) (1989), 17–29.Google Scholar
  6. 6.
    Markenscoff, X., Ni, L. and Papadimitriou, Ch. H.: The geometry of grasping,Int. J. Robotics Research 9(1) (1990), 61–74.Google Scholar
  7. 7.
    Mayer, D.: Ph.D. Thesis, Fac. Ciencias, National University of Mexico (UNAM), 1994.Google Scholar
  8. 8.
    O'Rourke, J.: Computational geometry, column 9,SIGACT News 21(1) (1990), 18–20, No. 74.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. Bracho
    • 1
  • L. Montejano
    • 1
  • J. Urrutia
    • 1
    • 2
  1. 1.Instituto de MatemáticasUNAM, Circuito exterior, C.U.México D.F.México
  2. 2.Department of Computer ScienceUniversity of OttawaCanada

Personalised recommendations