Geometriae Dedicata

, Volume 46, Issue 3, pp 313–329 | Cite as

On the dissection of simplices into orthoschemes

  • Katrin Tschirpke
Article

Abstract

In this paper the dissection ofn-dimensional Euclidean simplices is investigated. Some propositions are proved about the dihedral angles of order (n−1) occurring when a simplex is cut into two subsimplices by a hyperplane. Furthermore, a description of simplices by graphs is given. If a simplex S is dissected into two subsimplices, then two graphs can be assigned to the two simplices. It is shown how these graphs are linked with the original simplex. By means of these graph-theoretical methods the dissection of four-dimensional simplices is thoroughly investigated and a new method for dissecting a four-dimensional simplex into orthoschemes is given. It is proved that 500 is an upper bound of the minimum number of orthoschemes needed.

References

  1. 1.
    Böhm, J., ‘Zur vollständigen Zerlegung der euklidischen und nichteuklidischen Tetraeder in Orthogonal-Tetraeder’,Beiträge Algebra Geom. 9 (1980), 29–54.Google Scholar
  2. 2.
    Böhm, J. and Hertel, E.,Polyedergeometrie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.Google Scholar
  3. 3.
    Böhm, J. and Schwulow, H., ‘Eine Zerlegung von vierdimensionalen euklidischen und nichteuklidischen Simplexen in Orthoscheme’,Wiss. Z. Friedrich-Schiller-Univ. Jena Math. Natur. Reihe H.4 (1982), 545–555.Google Scholar
  4. 4.
    Charasischwili, A. B., ‘Orthogonal simplices in the four-dimensional space’,Bull. Acad. Sci. Georgian SSR 88 (1) (1977), 33–36 (in Russian).Google Scholar
  5. 5.
    Fiedler, M., ‘The geometry of simplices in theE n, I’,Časopis Pešt. Mat. 79, 297–320 (in Czech.).Google Scholar
  6. 6.
    Fiedler, M., ‘Über qualitative Winkeleigenschaften der Simplexe’,Czech. Math. J. 7 (1957), 463–477.Google Scholar
  7. 7.
    Lenhard, H. Chr., ‘Zerlegung von Tetraedern in Orthogonaltetraeder’,Elem. Math. 61 (1960), 106–107.Google Scholar
  8. 8.
    Tschirpke, K., ‘Orthoschemzerlegungen von Simplizes’, Diplomarbeit, Friedrich-Schiller, Univ. Jena, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Katrin Tschirpke
    • 1
  1. 1.Mathematische F'akultät der Friedrich-SchillerUniversität JenaJenaGermany

Personalised recommendations