Geometriae Dedicata

, Volume 56, Issue 1, pp 103–113 | Cite as

The probability of generating a finite simple group

  • Martin W. Liebeck
  • Aner Shalev
Article

Abstract

We show that two random elements of a finite simple groupG generateG with probability → 1 as |G| → ∞. This settles a conjecture of Dixon.

Mathematics Subject Classifications (1991)

20P05 20G40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    Aschbacher, M. and Seitz, G. M.: Involutions in Chevalley groups over finite fields of even order,Nagoya Math. J. 63 (1976), 1–91; correction:ibid. 72 (1978), 135–136.Google Scholar
  2. [Ba]
    Babai, L.: The probability of generating the symmetric group,J. Combin. Theory Ser. A 52 (1989), 148–153.Google Scholar
  3. [Ca]
    Carter, R. W.: Conjugacy classes in the Weyl group, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer, Berlin, 1970, pp. 297–318.Google Scholar
  4. [At]
    Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.:Atlas of Finite Groups, Oxford Univ. Press, 1985.Google Scholar
  5. [Di]
    Dixon, J. D.: The probability of generating the symmetric group,Math. Z. 110 (1969), 199–205.Google Scholar
  6. [GL]
    Gorenstein, D. and Lyons, R.: The local structure of finite groups of characteristic 2 type,Memo. Amer. Math. Soc. 42, No. 276 (1983).Google Scholar
  7. [Iw]
    Iwahori, N.: Centralizers of involutions in Chevalley groups, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer, Berlin, 1970, pp. 267–295.Google Scholar
  8. [Ka]
    Kantor, W. M.: Some topics in asymptotic group theory, in M. W. Liebeck and J. Saxl (eds),Groups, Combinatorics and Geometry, London Math. Soc. Lecture Notes 165 (1992), pp. 403–421.Google Scholar
  9. [KL]
    Kantor, W. M. and Lubotzky, A.: The probability of generating a finite classical group,Geom. Dedicata 36 (1990), 67–87.Google Scholar
  10. [LaSe]
    Landazuri, V. and Seitz, G. M.: On the minimal degrees of projective representations of the finite Chevalley groups,J. Algebra 32 (1974), 418–443.Google Scholar
  11. [LS]
    Liebeck, M. W. and Saxl, J.: On the orders of maximal subgroups of the finite exceptional groups of Lie type,Proc. London Math. Soc. 55 (1987), 299–330.Google Scholar
  12. [LSS]
    Liebeck, M. W., Saxl, J. and Seitz, G. M.: Subgroups of maximal rank in finite exceptional groups of Lie type,Proc. London Math. Soc. 65 (1992), 297–325.Google Scholar
  13. [LST]
    Liebeck, M. W., Saxl, J. and Testerman, D. M.: Simple subgroups of large rank in groups of Lie type,Proc. London Math. Soc., to appear.Google Scholar
  14. [LSe]
    Liebeck, M. W. and Seitz, G. M.: Maximal subgroups of exceptional groups of Lie type, finite and algebraic,Geom. Dedicata 35 (1990), 353–387.Google Scholar
  15. [Ma]
    Malle, G.: The maximal subgroups of2 F 4(q 2),J. Algebra 139 (1991), 52–69.Google Scholar
  16. [MSW]
    Malle, G., Saxl, J. and Weigel, T.: Generation of classical groups,Geom. Dedicata 49 (1994), 85–116.Google Scholar
  17. [SS]
    Springer, T. A. and Steinberg, R.: Conjugacy classes, in A. Borelet al. (eds),Seminar on Algebraic Groups and Related Topics, Lecture Notes in Math. 131, Springer-Verlag, Berlin, 1970, pp. 168–266.Google Scholar
  18. [Zs]
    Zsigmondy, K.: Zur Theorie der Potenzreste,Monatsh. Math. Phys. 3 (1892), 265–284.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Martin W. Liebeck
    • 1
  • Aner Shalev
    • 2
  1. 1.Department of MathematicsImperial CollegeLondonEngland
  2. 2.Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations