Geometriae Dedicata

, Volume 49, Issue 1, pp 1–24 | Cite as

On PSL(2,q) as a totally irregular collineation group

  • Chat Yin Ho
  • Adilson Gonçalves


Non-abelian simple totally irregular collineation groups containing an involutorial perspectivity have been classified by the authors in a recent paper. They are PSL(2,q), PSL(3,q), PSU(3,q), Sz(q), the alternating group on 7 letters, and the second Janko sporadic simple group. In this article, we study PSL(2,q),q congruent to 1 modulo 4, as a collineation group containing an involutory homology.


Simple Group Collineation Group Sporadic Simple Group Involutory Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dembowski, P.,Finite Geometries, Springer, New York, 1970.Google Scholar
  2. 2.
    Gonçalves, A. and Ho, C. Y., ‘On PSU(3,q) as collineation groups’,J. Algebra 111 (1987), 1–13.Google Scholar
  3. 3.
    Gonçalves, A. and Pomareda, R., ‘Planes proyectivos de órden 17’,Notas Soc. Mat. Chile 1 (3) (1981).Google Scholar
  4. 4.
    Gonçalves, A. and Barboza, F. D., ‘On collineation groups of projective planes of ordern ≡ −1(mod 6)’,Comm. Algebra 13 (7) (1985), 1509–1534.Google Scholar
  5. 5.
    Gorenstein, D.,Finite Groups, Harper and Row, New York, 1968.Google Scholar
  6. 6.
    Hering, Ch., ‘On the structure of finite collineation groups of projective planes’,Abh. Math. Sem. Univ. Hamburg 49 (1979), 155–182.Google Scholar
  7. 7.
    Hering, Ch. and Walker, M., ‘Perspectivities in irreducible collineation groups of projective planes I’,Math. Z. 155 (1977), 95–101.Google Scholar
  8. 8.
    Hering, Ch. and Walker, M., ‘Perspectivities in irreducible collineation groups of projective planes II’,J. Statist. Plann. Inference 3 (1979), 151–177.Google Scholar
  9. 9.
    Ho, C. Y., ‘Characterization of projective planes of small order’,J. Combin. Theory A 41 (1986), 189–220.Google Scholar
  10. 10.
    Ho, C. Y., ‘Involutory collineations of finite planes’,Math. Z. 193 (1986), 235–240.Google Scholar
  11. 11.
    Ho, C. Y., ‘Finite projective planes that admit a strongly irreducible collineation group’,Canad. J. Math. 37 (1985), 579–611.Google Scholar
  12. 12.
    Ho, C. Y., ‘On the order of a projective plane with a totally irregular collineation group’,AMS Proc. Sympos. Pure Math. 47, Part II (1987), 423–429.Google Scholar
  13. 13.
    Ho, C. Y., ‘Totally irregular collineation groups and finite Desarguesian planes’,Coding Theory and Design Theory, Part II, IMA Vol. Math. Appl.21, Springer, New York, 1990, pp. 127–131.Google Scholar
  14. 14.
    Ho, C. Y., ‘Projective planes of order 15 and other odd composite orders’,Geom. Dedicata 27 (1988), 49–64.Google Scholar
  15. 15.
    Hughes, D. and Piper, F.,Projective Planes, Springer, New York, 1973.Google Scholar
  16. 16.
    Huppert, B.,Endliche Gruppen I, Springer, New York, 1967.Google Scholar
  17. 17.
    Kantor, W., ‘On the structure of collineation groups of finite projective planes’,Proc. London Math. Soc. 32 (1976), 385–402.Google Scholar
  18. 18.
    Moorhouse, E., ‘PSL(2,q) as a collineation group of projective planes of small order’ (to appear inGeom. Dedicata).Google Scholar
  19. 19.
    Reifart, A. and Stroth, G., ‘On finite groups containing perspectivities’,Geom. Dedicata 13 (1982), 7–46.Google Scholar
  20. 20.
    Stroth, G., ‘On Chevalley groups acting on projective planes’,J. Algebra 77 (1982), 360–381.Google Scholar
  21. 21.
    Yaqub, J., ‘Planes with given groups’,Proc. of Geometry Seminar, Toronto (1974).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Chat Yin Ho
    • 1
  • Adilson Gonçalves
    • 2
  1. 1.Dept. of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Instituto de MathematicaUniversidade Federal de Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations