Advertisement

Geometriae Dedicata

, Volume 47, Issue 1, pp 111–117 | Cite as

Approximation of convex bodies by rectangles

  • Marek Lassak
Article

Abstract

For every plane convex body there is a pair of inscribed and circumscribed homothetic rectangles. The positive ratio of homothety is not greater than 2.

Keywords

Convex Body Positive Ratio Plane Convex Plane Convex Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asplund, E., ‘Comparison between plane symmetric vonvex bodies and parallelograms’,Math. Scand. 7 (1960), 171–180.Google Scholar
  2. 2.
    Chakerian, G. D. and Stein, S. K., ‘Some intersection properties of convex bodies’,Proc. Amer. Math. Soc. 18 (1967), 109–112.Google Scholar
  3. 3.
    Eggleston, H. D.,Convexity, Cambridge University Press, Cambridge, 1969.Google Scholar
  4. 4.
    Grünbaum, B., ‘Measures of symmetry for convex sets’, inConvexity, Proceedings of Symposia in Pure Mathematics 7, American Mathematical Society, Providence, 1963, pp. 233–270.Google Scholar
  5. 5.
    Hadwiger, H., ‘Volumschätzung für die einen Eikörper überdeckenden und unterdeckenden Parallelotope’,Elem. Math. 10 (1955), 122–124.Google Scholar
  6. 6.
    John, F., ‘Extremum problems with inequalities as subsidiary conditions’,Studies and Essays presented to R. Courant, New York, 1948, pp. 187–204.Google Scholar
  7. 7.
    Kosiński, A., ‘A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies’,Colloq. Math. 17 (1957), 216–218.Google Scholar
  8. 8.
    Lassak, M., ‘Approximation of plane convex bodies by centrally symmetric convex bodies’,J. London Math. Soc. (2) 40 (1989), 369–377.Google Scholar
  9. 9.
    Lassak, M., ‘Approximation of convex bodies by parallelotopes’,Bull. Polish Acad. Math. 39 (1991), 219–223.Google Scholar
  10. 10.
    Pólya, G. and Szegö, G., ‘Isoperimetric inequalities in mathematical physics’,Ann. Math. Stud. 27 (1951).Google Scholar
  11. 11.
    Radziszewski, K., ‘Sur une problème extrémal relatif aux figures inscrites et circonscrites aux figures convexes’,Ann. Univ. Mariae Curie-Sklodowska, Sect A 6 (1952), 5–18.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Marek Lassak
    • 1
  1. 1.Instytut Matematyki i Fizyki ATRBydgoszczPoland

Personalised recommendations