Geometriae Dedicata

, Volume 58, Issue 1, pp 91–100 | Cite as

Generalized polygons with highly transitive collineation groups

  • Michael Joswig
Article

Abstract

It will be proved that the compact connected topological generalized quadrangles which admit a collineation group that acts transitively on ordered pentagons are precisely the real or complex orthogonal quadrangles, up to duality.

Mathematics Subject Classifications (1991)

51E12 51H15 51H20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bott, R.: An application of the Morse theory to the topology of Lie groups,Bull. Soc. Math. France 84 (1956), 251–281.Google Scholar
  2. 2.
    Bourbaki, N.:Algèbre IX, Hermann, Paris, 1973.Google Scholar
  3. 3.
    Bourbaki, N.:Lie Groups and Lie Algebras, Chapters 1–3, Springer, Berlin, Heidelberg, New York, 1989.Google Scholar
  4. 4.
    Buekenhout, F. and Van Maldeghem, H.: Finite distance-transitive generalized polygons,Geom. Dedicata 52 (1994), 41–51.Google Scholar
  5. 5.
    Burns, K. and Spatzier, R.: On topological Tits buildings and their classification,Publ. Math. IHES 65 (1987), 5–34.Google Scholar
  6. 6.
    De Smet, V. and Van Maldeghem, H.: The finite Moufang hexagons coordinatized,Beiträge Alg. Geom. 34 (1993), 217–232.Google Scholar
  7. 7.
    Dieudonné, J.:La Géometrie des Groupes Classiques, Springer, Berlin, Heidelberg, New York, 1971.Google Scholar
  8. 8.
    Grundhöfer, T. and Knarr, N.: Topology in generalized quadrangles,Top. Appl. 34 (1990), 139–152.Google Scholar
  9. 9.
    Grundhöfer, T., Knarr, N. and Kramer, L.: Flag-homogeneous compact connected polygons,Geom. Dedicata 55(1) (1995), 95–114.Google Scholar
  10. 10.
    Hanssens, G. and Van Maldeghem, H.: Algebraic properties of quadratic quaternary rings,Geom. Dedicata 30 (1989), 43–67.Google Scholar
  11. 11.
    Hsiang, W.-Y. and Lawson Jr, H. B.: Minimal submanifolds of low cohomogeneity,J. Differential Geom. 5 (1971), 1–38.Google Scholar
  12. 12.
    Hughes, D. R. and Piper, F. C.:Projective Planes, Springer, Berlin, Heidelberg, New York, 1973.Google Scholar
  13. 13.
    Iwasawa, K.: On some types of topological groups,Ann. Math. 50 (1949), 507–558.Google Scholar
  14. 14.
    Knarr, N.: The nonexistence of certain topological polygons,Forum Math. 2 (1990), 603–612.Google Scholar
  15. 15.
    Kramer, L.: Compact polygons, Dissertation, Universität Tübingen, 1994.Google Scholar
  16. 16.
    Löwen, R.: Homogeneous compact projective planes,J. reine angew. Math. 321 (1981), 217–220.Google Scholar
  17. 17.
    Pickert, G.:Projektive Ebenen, Springer, Berlin, Göttingen, Heidelberg, 1955.Google Scholar
  18. 18.
    Ronan, M. A.:Lectures on Buildings, Academic Press, San Diego, 1989.Google Scholar
  19. 19.
    Rotman, J. J.:An Introduction to Algebraic Topology, Springer, Berlin, Heidelberg, New York, 1988.Google Scholar
  20. 20.
    Salzmann, H.: Homogene kompakte projektive Ebenen,Pacific J. Math. 60, No. 2 (1975), 217–234.Google Scholar
  21. 21.
    Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M.:Compact Projective Planes, De Gruyter, Berlin, New York, 1995.Google Scholar
  22. 22.
    Thas, J. A. and Van Maldeghem, H.: The classification of finite generalized quadrangles admitting a group acting transitively on ordered pentagons (to appear).Google Scholar
  23. 23.
    Tits, J.:Tabellen zu den einfachen Liegruppen und ihren Darstellungen, Springer, Berlin, Heidelberg, New York, 1967.Google Scholar
  24. 24.
    Tits, J.:Buildings of Spherical Type and Finite BN-Pairs, Springer, Berlin, Heidelberg, New York, 1974.Google Scholar
  25. 25.
    Van Maldeghem, H.: A configurational characterization of the Moufang generalized polygons,Europ. J. Combin. 11 (1990), 381–392.Google Scholar
  26. 26.
    Warner, G.:Harmonic Analysis of Semi-simple Lie Groups I, Springer, Berlin, Heidelberg, New York, 1972.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Michael Joswig
    • 1
  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations