Mathematische Zeitschrift

, Volume 178, Issue 2, pp 175–213

Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces

  • Hans Delfs
  • Manfred Knebusch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Topologie generale, Chapitres 1–4, Nouvelle édition. Paris: Hermann 1971Google Scholar
  2. 2.
    Brumfield, G.W.: Partially ordered rings and semialgebraic geometry. London Mathematical Society Lecture Note Series37. Cambridge-London-New York: Cambridge University Press 1979Google Scholar
  3. 3.
    Cohen, P.J.: Decision procedures for real andp-adic fields. Comm. Pure Appl. Math.22, 131–151 (1969)Google Scholar
  4. 4.
    Coste-Roy, M.F.: Spectre réel d'un anneau et topos étale réel. Thèse. Université Paris-Nord 1980Google Scholar
  5. 5.
    Delfs, H.: Kohomologie affiner semialgebraischer Räume. Dissertation. Regensburg 1981Google Scholar
  6. 6.
    Delfs, H., Knebusch, M.: Semialgebraic topology over a real closed field I: Paths and components in the set of rational points of an algebraic variety. Math. Z.177, 107–129 (1981)Google Scholar
  7. 7.
    Grothendieck, A., Dieudonné, J.: Elements de géométrie algébrique, I, II. Inst. Hautes Études Sci. Publ. Math.4 (1960);8 (1961)Google Scholar
  8. 8.
    Grothendieck, A., Dieudonné, J.: Elements de Géométrie Algébrique I. Grundlehren der Mathematischen Wissenschaften166. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  9. 9.
    Grothendieck, A.: Revêtements étales et groupe fondamental. Seminaire de Géométrie Algébrique du Bois Marie 1960/61 (SGA1). Lecture Notes in Mathemtics224. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  10. 10.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics52. New York-Heidelberg-Berlin: Springer 1977Google Scholar
  11. 11.
    Knebusch, M.: On algebraic curves over real closed fields I, II. Math. Z.150, 49–70;151, 189–205 (1976)Google Scholar
  12. 12.
    Seidenberg, A.: A new decision method for elementary algebra. Ann. of Math.60, 365–374 (1954)Google Scholar
  13. 13.
    Tarski, A.: A decision method for elementary algebra and geometry. 2. ed. revised. Berkeley-Los Angeles: University of California Press 1951Google Scholar
  14. 14.
    Whitney, H.: Elementary structure of real algebraic varieties. Ann. of Math.66, 545–556 (1957)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hans Delfs
    • 1
  • Manfred Knebusch
    • 1
  1. 1.Fakultät für Mathematik der UniversitätRegensburgFederal Republic of Germany

Personalised recommendations