Advertisement

Vegetation History and Archaeobotany

, Volume 6, Issue 2, pp 117–131 | Cite as

Vegetation and climatic history of southwest Africa: A marine palynological record of the last 300,000 years

  • Shi Ning
  • Lydie M. Dupont
Article

Abstract

A continuous palynological record from the marine core GeoB1016-3 from the Angola Basin reveals the regional vegetation and climate history of the last 300 ka. Pollen and spores found at the studied site have their source areas in the different vegetation zones of the adjacent part of the West African continent. Those vegetation zones comprise tropical rain forest, coastal mangrove swamp, Miombo woodland, dry forest, Afromontane forest, desert and semi-desert. The main pollen transport agent is the southeast trade wind system. Ocean currents also partly play a role in transporting pollen and spores. During the interglacial periods, ocean currents also transported palynomorphs southward. During the glacial periods, increased trade winds are indicated by high influx of pollen and spores and high pollen percentages of Poaceae and taxa from desert and semidesert vegetations. Reconstruction of the geographical position of palaeo-vegetation zones shows that the northern boundary of the Namib Desert did not move north of 12°S during the last 300 ka. This implies that northward shifts of the Angola-Benguela Front did not pass the latitude of 12°S.

Key words

Marine palynology Vegetation history Climate change Ocean currents Southwest Africa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agwu COC, Beug HJ (1982) Palynological studies of marine sediments off the west African coast. Meteor Forschungs Ergebnisse C 36: 1–30Google Scholar
  2. Bearman G (ed), Open University Course Team (1989) Ocean Circulation. Pergamon, Oxford, pp 122–137Google Scholar
  3. Bengo DM, Maley J (1991) Analyses des flux polliniques sur la marge sud du Gulf de Guinée depuis 135 000 ans. C R Acad Sci Paris 313, Sér II: 843–849Google Scholar
  4. Bennekom AJ van, Berger GW (1984) Hydrography and silica budget of the Angola Basin. Netherlands J Sea Res 17:149–200Google Scholar
  5. Caratini C, Tissot C (1983) Persistance d l'aridité en Namibie au cours du Pléistocène d'apres l'étude palynologique de la ride Walvis. Géomorphologie Littorale. CEGET 49: 135–146Google Scholar
  6. Diester-Haars L (1985) Late Quaternary sedimentation on the Eastern Walvis Ridge, SE Atlantic (HPC 532 and four piston cores). Marine Geol 65: 145–189Google Scholar
  7. Diester-Haars L, Heine K, Rothe P, Schrader H (1988) Late Quaternary history of continental climate and the Benguela Current off South West Africa. Palaeogeogr Palaeoclimatol Palaeoecol 65: 81–91Google Scholar
  8. Dupont LM, Agwu COC (1991) Environmental control of pollen grain distribution patterns in the Gulf of Guinea and offshore NW-Africa. Geol Rundsch 80: 567–589Google Scholar
  9. Dupont LM, Agwu COC (1992) Latitudinal shifts of forest and savanna in NW Africa during the Brunhes chron: further marine palynological results from site M 16415 (9°N, 19°W). Veget Hist Archaeobot 1: 163–175Google Scholar
  10. Dupont LM, Jahns S, Marret F, Shi N (1996) Podocarpus in West Africa during the Late Pleistocene. Palaeoecol Afr 24: 85–101Google Scholar
  11. Dupont LM, Weinelt M (1996) Vegetation history of the savanna corridor between the Guinean and the Congolian rain forest during the last 150,000 years. Veget Hist Archaeobot 5:273–292Google Scholar
  12. Dupont LM, Beug H-J, Stalling H, Tiedemann R (1989) First palynological results from site 658 at 21°N off northwest Africa: polllen as climate indicators. Proc ODP Sci results 108: 93–111Google Scholar
  13. Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeogr Palaeoclimatol Palaeoecol 109: 345–356Google Scholar
  14. Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the ocean water column. Prog Oceanog 16: 147–194Google Scholar
  15. Fredoux A (1994) Pollen analysis of a deep-sea core in the Gulf of Guinea: vegetation and climatic change during thelast 225,000 years BP. Palaeogeogr Palaeoclimatol Palaeoecol 109: 317–330Google Scholar
  16. Gardner JV, Hays JD (1976) Response of sea-surface temperature and circulation to global climatic change during the past 200,000 years in the eastern equatorial Atlantic Ocean. Mern Geol Soc America 145: 221–246Google Scholar
  17. Gordon AL, Bosley KT (1991) Cyclonic gyre in the tropical South Atlantic. Deep Sea Research 38, Suppl 1: S323-S343Google Scholar
  18. Hastenrath S (1991) Climate and Circulation of the Tropics. Kluwer, DordrechtGoogle Scholar
  19. Hooghiemstra H, Agwu COC (1986) Distribution of palynomorphs in marine sediments: a record for seasonal wind patterns over NW Africa and, adjacent Atlantic. Geol Rundsch 75(1): 81–95Google Scholar
  20. Hooghiemstra H, Agwu COC (1988) Changes in the vegetation and trade winds in Equatorial Northwest Africa 140,00070,000 Yr B.P. as deduced from two marine pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 66: 173–213Google Scholar
  21. Hooghiemstra H (1989) Variations of the NW Africa trade wind regime during the last 140 000 years: Changes in pollen influx evidenced by marine sediment records. In: Leinen M, Sarnthein M (eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer, Dordrecht, pp 733–770Google Scholar
  22. Hooghiemstra H, Stalling H, Agwu COC, Dupont LM (1992) Vegetation and climatic changes at the northern fringe of the Sahara 250,000-5000 years BP: evidence from 4 marine pollen records located between Portugal and the Canary Islands. Rev Palaeobot Palynol 74: 1–53.Google Scholar
  23. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine 6180 record, In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman J (eds) Milankovitch and Climate. Reidel, Dordrecht, pp 269–305Google Scholar
  24. Jahns S (1996) Vegetation history and climate changes in West Equatorial Africa during the Late Pleistocene and the Holocene, based on a marine pollen diagram from the Congo fan. Veget Hist Archaeobot 5: 207–213Google Scholar
  25. Jansen JHF, Iperen JM van (1991) A 220,000-year climatic record for the east-equatorial Atlantic Ocean and equatorial Africa: Evidence from diatoms and opal phytoliths in Zaire (Congo) deep-sea fan. Paleoceanography 6: 573–591Google Scholar
  26. Knapp R (1973) Die Vegetation von Afrika. Fischer, StuttgartGoogle Scholar
  27. Leeuwen RJW van (1989) Sea-floor distribution and Late Quaternary faunal pattern of planktonic and benthic foraminifers in the Angola Basin. Micropaleontology 38: 1–287Google Scholar
  28. Leroy S, Dupont LM (1994) Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP Site 658. Palaeogeogr Palaeoclimatol Palaeoecol 109: 295–316Google Scholar
  29. Leroux M (1983) The climate of tropical Africa Atlas. Champion, ParisGoogle Scholar
  30. Lezine AM, Vergnaud-Grazzini C (1993) Evidence of forest extension in West-Africa since 22,000 BP: a pollen record from the eastern tropical Atlantic. Quat Sci Rev 12(3): 203–210Google Scholar
  31. Marret F (1994) Evolution paléoclimatique et paléohydrologique de l'Atlantique est-equatorial et du proche continent au Quaternaire terminal. Contribution palynologique (kystes de dinoflagellés, pollen et spores). Doctoral Thesis Univ BordeauxGoogle Scholar
  32. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high resolution O to 300,000 year chronostratigraphy. Quat Res 27: 1–29Google Scholar
  33. Meeuwis JM, Lutjeharms JRE (1990) Surface thermal characteristics of the Angola-Benguela front. S African J Mar Sci 9: 261–279Google Scholar
  34. Morley JJ, Hays JD (1979) Comparison of glacial and interglacial oceanographic conditions in the South Atlantic from variations in calcium carbonate and radiolarian distribution. Quat Res 12: 396–408Google Scholar
  35. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanog 26: 1–73Google Scholar
  36. Pokras EM (1987) Diatom record of Late Quaternary climatic change in the East equatorial Atlantic and tropical Africa. Paleoceanography 2: 273–286Google Scholar
  37. Sarnthein M, Winn K, Jung S, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9: 209–267Google Scholar
  38. Schneider R (1991) Spatquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktion auf Variationen im Passat Monsun-Windsystem and in der Advektion des Benguela-Küstenstroms. Berichte 21, Fachbereich Geowissenschaften, Univ BremenGoogle Scholar
  39. Schneider R, Müller PJ, Ruhland G (1995) Late Quaternary surface circulation in the eastern equatorial South Atlantic: Evidence from alkenone sea surface temperature. Paleoceanography 10: 197–219Google Scholar
  40. Schnell R (1977) La flore et la végétation de l'Afrique tropicale, part 2. Gauthier-Villars, ParisGoogle Scholar
  41. Schrader HJ (1971) Fecal Pellets: Role in Sedimentation of Pelagic Diatoms. Science 174: 55–57Google Scholar
  42. Silver MW, Shanks AL, Trent JD (1978) Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201: 371–373Google Scholar
  43. Wefer G, Cruise Participants (1988) Bericht über die METEOR-Fahrt M6/6, Libreville - Las Palmas, 18.2-23.3.1988. Berichte, Fachbereich Geowissenschaften, Univ BremenGoogle Scholar
  44. Wefer G (1993) Formation and composition of marine particulates. In: Heimann M (ed) The Global Carbon Cycle. Springer, Berlin, pp 505–530Google Scholar
  45. White F (1983) The vegetation of Africa. UNESCO, ParisGoogle Scholar
  46. Zinderen Bakker EM van (1984) Palynological evidence for Late Cenozoic arid conditions along the Namibia coast from holes 352 and 530A, Leg 75, Deep Sea Drilling Project. In: Hay WW, Sibuet JC et al. (ids) Initial Rep DSDP 75: 763–768Google Scholar
  47. Zinderen Bakker EM van, Müller M (1987) Pollen studies in the Namib Desert. Pollen Spores 29: 185–206Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Shi Ning
    • 1
  • Lydie M. Dupont
    • 2
  1. 1.Institute of Palynology and Quaternary SciencesUniversity of GöttingenGöttingenGermany
  2. 2.GeosciencesUniversity of BremenBremenGermany

Personalised recommendations