Mathematische Zeitschrift

, Volume 176, Issue 2, pp 223–246

Decomposition theorems for group pairs

  • Heinz Müller
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamford, C., Dunwoody, M.J.: On accessible groups. J. Pure Appl. Alg.7, 333–346 (1976)Google Scholar
  2. 2.
    Bieri, R.: Homological dimension of discrete groups. Queen Mary College Mathematics Notes, London 1976Google Scholar
  3. 3.
    Bieri, R., Eckmann, B.: Relative homology and Poincaré duality for group pairs. J. of Pure and Applied Algebra13, 277–319 (1978)Google Scholar
  4. 4.
    Chiswell, I.M.: Abstract length functions in groups. Math. Proc. Cambridge Philos. Soc.80, 451–463 (1976)Google Scholar
  5. 5.
    Chiswell, I.M.: Exact sequences associated with a graph of groups. J. of Pure and Applied Algebra8, 63–74 (1976)Google Scholar
  6. 6.
    Cohen, D.E.: Groups of cohomological dimension one. Lecture Notes in Math.245. Berlin Heidelberg New York: Springer 1972Google Scholar
  7. 7.
    Dunwoody, M.J.: Accessibility and groups of cohomological dimension one. Proc. of the London Math. Soc.38, 193–215 (1979)Google Scholar
  8. 8.
    Dunwoody, M.J.: Recognizing free factors, in: Homological Group Theory. L.M.S. Lecture Notes36 (1979)Google Scholar
  9. 9.
    Eckmann, B., Müller, H.: Poincaré Duality Groups of Dimension Two. To appear in Comment. Math. Helv.Google Scholar
  10. 10.
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin Heidelberg New York: Springer 1977Google Scholar
  11. 11.
    Müller, H.: Théorèmes de décompositions pour les paires de groupes. C.R. Acad. Sci.A-289/5, 307–309 (1979)Google Scholar
  12. 12.
    Serre, J.-P.: Arbres, amalgames et SL2. Astérisque 46, Soc. Math. de France, 1977Google Scholar
  13. 13.
    Stallings, J.R.: On torsion-free groups with infinitely many ends. Ann. of Math.88, 312–334 (1968)Google Scholar
  14. 14.
    Stallings, J.R.: Group theory and three-dimensional manifolds. Yale Math. Monographs 4, Yale Univ. Press, 1971Google Scholar
  15. 15.
    Swan, R.G.: Groups of cohomological dimension one. J. Algebra12, 585–601 (1969)Google Scholar
  16. 16.
    Swarup, G.A.: Relative version of a Theorem of Stallings. J. of Pure and Applied Algebra11, 75–82 (1977)Google Scholar
  17. 17.
    Wall, C.T.C.: Paris of relative cohomological dimension one. J. of Pure and Applied Algebra1, 141–154 (1971)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Heinz Müller
    • 1
  1. 1.Forschungsinstitut für MathematikETH-ZentrumZürichSchweiz

Personalised recommendations