A fast transform for spherical harmonics

  • Martin J. Mohlenkamp
Article

Abstract

Spherical harmonics arise on the sphere S2 in the same way that the (Fourier) exponential functions {eikθ}k∈ℤ arise on the circle. Spherical harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform (FFT). Without a fast transform, evaluating (or expanding in) spherical harmonic series on the computer is slow—for large computations probibitively slow. This paper provides a fast transform.

For a grid ofO(N2) points on the sphere, a direct calculation has computational complexityO(N4), but a simple separation of variables and FFT reduce it toO(N3) time. Here we present algorithms with timesO(N5/2log N) andO(N2(log N)2).

The problem quickly reduces to the fast application of matrices of associated Legendre functions of certain orders. The essential insight is that although these matrices are dense and oscillatory, locally they can be represented efficiently in trigonometric series.

Math subject classifications

Primary 65T20 secondary 42C10 33C55 

Keywords and phrases

spherical harmonics fast transforms associated Legendre functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alpert, B. and Rokhlin, V. (1991). A fast algorithm for the evaluation of Legendre expansions,SIAM J. Sci. Stat. Comp., 12(sn1), 158–179.Google Scholar
  2. [2]
    Abramowitz, M. and Stegun, I.A. (1964).Handbook of Mathematical Functions, Vol. 55of Applied Math Series, National Bureau of Standards.Google Scholar
  3. [3]
    Bradie, B., Coifman, R., and Grossmann, A. (1993). Fast numerical computations of oscillatory integrals related to acoustic scattering,Appl. Comp. Harmon. Anal.,1, 94–99.Google Scholar
  4. [4]
    Beylkin, G., Coifman, R., and Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms,Comm. Pure Appl. Math.,44, 141–183.Google Scholar
  5. [5]
    Bennet, N.N. (1997). Signal Analysis of Chirps: Detection, Oscillatory Kernels, and Anisotropic Wavelets, Ph.D. Thesis, Yale University, New Haven, CT.Google Scholar
  6. [6]
    Bender, C.M. and Orzag, S.A. (1978).Advanced Mathematical Methods for Scientists and Engineers, International series in pure and applied mathematics, McGraw-Hill, New York.Google Scholar
  7. [7]
    Brown, T.M. (1985). Solar rotation as a function of depth and latitude,Nature,317(sn17), 591–594.Google Scholar
  8. [8]
    Coifman, R.R. and Meyer, Y. (1991). Remarques sur l'analyse de Fourier à fenêtre,C.R. Académie des Sciences,312(1), 259–261.Google Scholar
  9. [9]
    Duvall, Jr., T.L., Elowitz, M., and Hill, F. (1989). A test of a modified algorithm for computing spherical harmonic coefficients using an fft,J. Comp. Phys.,80, 506–511.Google Scholar
  10. [10]
    Driscoll, J.R. and Healy, Jr., D.M. (1994). Computing Fourier transforms and convolutions on the 2-sphere,Adv. in Appl. Math.,15, 202–250.Google Scholar
  11. [11]
    Dilts, G.A. (1985). Computation of spherical harmonic expansion coefficients via fft's,J. Comp. Phys.,57, 439–453.Google Scholar
  12. [12]
    Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1954).Tables of Integral Transforms, McGraw-Hill, New York.Google Scholar
  13. [13]
    Flannery, B., Press, W., Teukolsky, S., and Vettering, W. (1992).Numerical Recipies in C, 2nd ed., Cambridge University Press, Cambridge, UK.Google Scholar
  14. [14]
    Hobson, E.W. (1931).The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York.Google Scholar
  15. [15]
    Landau, L.D. and Lifschitz, E.M. (1977).Quantum Mechanics (Non-Relativistic Theory, 3rd ed., Pergamon Press, New York.Google Scholar
  16. [16]
    Matviyenko, G. (1996). Optimized local trigonometric bases,Appl. Comp. Harmon. Anal.,3(sn4), 301–323.Google Scholar
  17. [17]
    Mohlenkamp, M.J. (1997).A Fast Transform for Spherical Harmonics, Ph.D. Thesis, Yale University, New Haven, CT.Google Scholar
  18. [18]
    Orszag, S.A. (1986). Fast eigenfunction transforms,Advances in Mathematics Supplementary Studies,10. Google Scholar
  19. [19]
    Stein, E. andWeiss, G. (1971).Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ.Google Scholar
  20. [20]
    Szegö, G. (1975).Orthogonal Polynomials, 4th ed., AMS, Providence, RI.Google Scholar
  21. [21]
    Thiele, C.M. and Villemos, L.F. (1996). A fast algorithm for adapted time-frequency tilings,Appl. Comp. Harmon. Anal.,3(sn2), 91–99.Google Scholar
  22. [22]
    Wickerhauser, M.V. (1994).Adapted Wavelet Analysis from Theory to Software, Peters, A.K., Wellesley, MA.Google Scholar

Copyright information

© Birkhäuser Boston 1999

Authors and Affiliations

  • Martin J. Mohlenkamp
    • 1
    • 2
  1. 1.Department of MathematicsYale UniversityUSA
  2. 2.Department of Applied MathematicsUniversity of ColoradoBoulder

Personalised recommendations