, Volume 16, Issue 3, pp 399–406 | Cite as

Norm-graphs and bipartite turán numbers

  • János Kollár
  • Lajos Rónyai
  • Tibor Szabó


For everyt>1 and positiven we construct explicit examples of graphsG with |V (G)|=n, |E(G)|≥c t ·n 2−1/t which do not contain a complete bipartite graghK t,t !+1 This establishes the exact order of magnitude of the Turán numbers ex (n, K t,s ) for any fixedt and allst!+1, improving over the previous probabilistic lower bounds for such pairs (t, s). The construction relies on elementary facts from commutative algebra.

Mathematics Subject Classification (1991)

05 C 35 14 A 25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. E. Andreev: On a family of Boolean matrices,Vestnik Mosk, Univ. Ser. 1 (mat.-mech)41 (1986), 97–100 (in Russian), English translation:Moscow Univ. Math. Bull. 41 (1986), 79–82.Google Scholar
  2. [2]
    M. F. Atiyah, I. G. Macdonald:Introduction to Commutative Algebra, Addison-Wesley, 1969.Google Scholar
  3. [3]
    B. Bollobás:Extremal Graph Theory, Academic Press, 1978.Google Scholar
  4. [4]
    N. Bourbaki:Algèbre Commutative, Hermann, 1961–1965.Google Scholar
  5. [5]
    W. G. Brown: On graphs that do not contain a Thomsen graph,Canad. Math. Bull.,9 (1966) 281–289.Google Scholar
  6. [6]
    P. Erdős: On sequences of integers no one of which divides the product of two others and on some related problems,Isvestija Nautshno-Issl, Inst. Mat. i Meh. Tomsk 2 (1938) 74–82,(Mitteilungen des Forschungsinstitutes für Math. und Mechanik Univ. Tomsk).Google Scholar
  7. [7]
    P. Erdős, A. Rényi, V. T. Sós: On a problem of graph theory,Studia Sci. Math. Hungar. 1, (1966), 215–235.Google Scholar
  8. [8]
    P. Erdős, J. Spencer:Probabilistic Methods in Combinatorics, Academic Press, London-New York, Akadémiai Kiadó, Budapest, 1974.Google Scholar
  9. [9]
    Z. Füredi: Turán type problems, in:London Math. Soc. Lecture Note Series 166, (ed.: A. D. Keedwell), Cambridge University Press, 1991, 253–300.Google Scholar
  10. [10]
    R. Lidl, H. Niederreiter:Introduction to Finite Fields and their Applications, Cambridge University Press, 1986.Google Scholar
  11. [11]
    T. Kővári, V. T. Sós, P. Turán: On a problem of K. Zarankiewicz,Colloquium Math.,3 (1954), 50–57.Google Scholar
  12. [12]
    H. Matsumura:Commutative ring theory, Cambridge University Press, 1989.Google Scholar
  13. [13]
    D. Quillen: Projective modules over a polynomial ring,Inventiones Mathematicae,36 (1976), 167–171.Google Scholar
  14. [14]
    I. R. Shafarevich:Basic Algebraic Geometry, 2nd revised and expanded ed., Springer Verlag, Berlin, 1994.Google Scholar
  15. [15]
    A. A. Suslin: Projective modules over a polynomial ring are free,Soviet Math. Dokl.,17 (1976), 1160–1164.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • János Kollár
    • 1
  • Lajos Rónyai
    • 2
  • Tibor Szabó
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of UtahSalt Lake City
  2. 2.Computer and Automation InstituteHungarian Academy of SciencsHungary
  3. 3.Department of MathematicsThe Ohio State UniversityUSA
  4. 4.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations