Combinatorica

, Volume 16, Issue 3, pp 353–382 | Cite as

Path problems in skew-symmetric graphs

  • Andrew V. Goldberg
  • Alexander V. Karzanov
Article

Abstract

We study path problems in skew-symmetric graphs. These problems generalize the standard graph reachability and shortest path problems. We establish combinatorial solvability criteria and duality relations for the skew-symmetric path problems and use them to design efficient algorithms for these problems. The algorithms presented are competitive with the fastest algorithms for the standard problems.

Mathematics Subject Classification (1991)

05 C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. K. Ahuja, K. Mehlhorn, J. B. Orlin, andR. E. Tarjan: Faster Algorithms for the Shortest Path Problem,Technical Report CS-TR-154-88, Department of Computer Science, Princeton University, 1988.Google Scholar
  2. [2]
    R. E. Bellman: On a Routing Problem,Quart. Appl. Math. 16 (1958), 87–90.Google Scholar
  3. [3]
    C. Berge: Two Theorems in Graph Theory,Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 842–844.Google Scholar
  4. [4]
    T. H. Cormen, C. E. Leiserson, andR. L. Rivest:Introduction to Algorithms, (MIT Press, Cambridge, MA, 1990).Google Scholar
  5. [5]
    E. W. Dijkstra: A Note on Two Problems in Connection with Graphs,Numer. Math. 1 (1959), 269–271.Google Scholar
  6. [6]
    J. Edmonds: Maximum Matchings and a Polyhedron with 0,1-vertices,J. Res. Nat. Bur. Stand. 96B (1965), 125–130.Google Scholar
  7. [7]
    J. Edmonds: Paths, Trees and Flowers,Canada J. Math. 17 (1965), 449–467.Google Scholar
  8. [8]
    J. Edmonds, andE. L. Johnson: Matching, a Well-Solved Class of Integer Linear Programs, In: R. Guy, H. Haneni, and J. Schönhein, editors,Combinatorial Structures and Their Applications (Gordon and Breach, NY, 1970), 89–92.Google Scholar
  9. [9]
    L. R. Ford, Jr., andD. R. Fulkerson:Flows in Networks (Princeton Univ. Press, Princeton, NJ, 1962).Google Scholar
  10. [10]
    M. L. Fredman, andR. E. Tarjan: Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms,J. Assoc. Comput. Mach. 34 (1987), 596–615.Google Scholar
  11. [11]
    H. N. Gabow, S. N. Maheshwari, andL. Osterweil: On Two Problems in the Generation of Program Test Paths,IEEE Trans. on Software Eng. SE-2 (1976), 227–231.Google Scholar
  12. [12]
    H. N. Gabow, andR. E. Tarjan: A Linear-Time Algorithm for a Special Case of Disjoint Set Union,J. Comp. and Syst. Sci. 30 (1985), 209–221.Google Scholar
  13. [13]
    A. V. Goldberg: Scaling Algorithms for the Shortest Paths Problem, In:Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, 1993, 222–231.Google Scholar
  14. [14]
    A. V. Goldberg, andA. V. Karzanov: Maximum Flows in Skew-Symmetric Graphs,Technical Report (Stanford University, Stanford, 1995).Google Scholar
  15. [15]
    A. V. Goldberg, andA. V. Karzanov: Minimum Cost Flows in Skew-Symmetric Graphs, in preparation.Google Scholar
  16. [16]
    M. Grötschel, L. Lovász, andA. Schrijver:Geometric Algorithms and Combinatorial Optimization (Springer Verlag, 1988).Google Scholar
  17. [17]
    A. V. Karzanov: An algorithm for determining a maximum packing of oddterminus cuts and its applications, in:Studies in Applied Graph Theory (A. S. Alekseev, ed., Nauka, Novosibirsk, 1986), 126–140; in Russian; English translation inAmer. Math. Soc. Translations, Ser. 2,158 (1994), 57–70.Google Scholar
  18. [18]
    A. V. Karzanov: A Minimum Cost Maximum Multiflow Problem, In:Combinatorial Methods for Flow Problems (Inst. for Systems Studies, Moscow, volume 4, 1979), 138–156; In Russian.Google Scholar
  19. [19]
    A. V. Karzanov: Minimum Cost Multiflows in Undirected Networks,Mathematical Programming 66 (3) (1994), 313–325.Google Scholar
  20. [20]
    L. Lovász: The Factorization of Graphs II,Acta Math. Hung. 23 (1972), 223–246.Google Scholar
  21. [21]
    L. Lovász, andM. D. Plummer:Matching Theory (Akadémiai Kiadó, Budapest, 1986).Google Scholar
  22. [22]
    E. F. Moore: The Shortest Path Through a Maze, In:Proc. of the Int. Symp. on the Theory of Switching (Harvard University Press, 1959), 285–292.Google Scholar
  23. [23]
    R. E. Tarjan: Efficiency of a Good but not Linear Set Union Algorithm,J. Assoc. Comput. Mach. 22 (1975), 1975.Google Scholar
  24. [24]
    W. T. Tutte: The Factorization of Linear Graphs,J. London Math. Soc. 22 (1947), 107–111.Google Scholar
  25. [25]
    W. T. Tutte: Antisymmetrical Digraphs,Canada J. Math. 19 (1967), 1101–1117.Google Scholar
  26. [26]
    H. Yinnone: On Paths Avoiding Forbidden Pairs of Vertices in a Graph, submitted toDiscrete Appl. Math. Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  • Alexander V. Karzanov
    • 2
  1. 1.NEC Research Institute, Inc.PrincetonUSA
  2. 2.Institute for System Analysis of Russian Acad. Sci.MoscowRussia

Personalised recommendations