Mathematische Zeitschrift

, Volume 176, Issue 1, pp 1–19

Schrödinger operators with singular magnetic vector potentials

  • Herbert Leinfelder
  • Christian G. Simader
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gagliardo, E.: Proprietà di alcune classi di funzione in più variabili. Ricerche di Mat.7, 102–137 (1958)Google Scholar
  2. 2.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften 224. Berlin, Heidelberg, New York, Springer 1977Google Scholar
  3. 3.
    Ikebe, T., Kato, T.: Uniqueness of self-adjoint extensions of singular elliptic differential operators. Arch. Rational Mech. Anal.9, 77–92 (1962)Google Scholar
  4. 4.
    Jörgens, K.: Über das wesentliche Spektrum elliptischer Differentialoperatoren vom Schrödinger-Typ. Tech. Report, Univ. of Heidelberg 1965Google Scholar
  5. 5.
    Kato, T.: Remarks on Schrödinger operators with vector potentials. Integral Equations Operator Theory1, 103–113 (1978)Google Scholar
  6. 6.
    Kato, T.: Perturbation Theory for Linear Operators. Berlin, Heidelber, New York: Springer 1966Google Scholar
  7. 7.
    Kato, T.: Schrödinger operator with singular potentials. Israel J. Math.13, 135–148 (1972)Google Scholar
  8. 8.
    Kato, T.: A second look at the essential selfadjointness of Schrödinger operators. Physical Reality and Mathematical Description, pp. 193–201. D. Reidel Publ. Co., Dordrecht 1974Google Scholar
  9. 9.
    Marcus, M., Mizel, V.J.: Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Amer. Math. Soc.251, 187–218 (1979)Google Scholar
  10. 10.
    Marcus, M., Mizel, V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal.33, 217–229 (1979)Google Scholar
  11. 11.
    Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math.8, 648–674 (1955)Google Scholar
  12. 12.
    Perelmuter, M.A., Semenov, Yu.A.: Selfadjointness of elliptic operators with finite or infinite variables. Funktional Anal. i. Prilozen14, 81–82 (1980)Google Scholar
  13. 13.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II, Fourier Analysis, Self-Adjointness. New York, San Francisco, London: Academic Press 1975Google Scholar
  14. 14.
    Schechter, M.: Spectra of Partial Differential Operators. Amsterdam, London: North Holland 1971Google Scholar
  15. 15.
    Schechter, M.: Essential self-adjointness of the Chrödinger operator with magnetic vector potential. J. Func. Anal.20, 93–104 (1975)Google Scholar
  16. 16.
    Simader, C.G.: Bemerkungen über Schrödinger-Operatoren mit stark singulären Potentialen. Math. Z.138, 53–70 (1974)Google Scholar
  17. 17.
    Simader, C.G.: Remarks on Kato's inequality. To appearGoogle Scholar
  18. 18.
    Simon, B.: Schrödinger Operators with singular magnetic vector potentials. Math. Z.131, 361–370 (1973)Google Scholar
  19. 19.
    Simon, B.: Maximal and minimal Schrödinger forms. Journal of Operator Theory.1, 37–47 (1979)Google Scholar
  20. 20.
    Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus. Math. Ann.135, 50–80 (1958)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Herbert Leinfelder
    • 1
  • Christian G. Simader
    • 1
  1. 1.Fakultät für Mathematik und PhysikUniversität BayreuthBayreuthGermany

Personalised recommendations