Advertisement

Communications in Mathematical Physics

, Volume 122, Issue 2, pp 249–265 | Cite as

Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations

  • D. Goderis
  • P. Vets
Article

Abstract

We analyse macroscopic fluctuations of an infinite quantum system and introduce the CCR-C*-algebra of normal fluctuations. A non-commutative central limit theorem for mixing quantum systems is proved.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanford, O. E., Ruelle, D.: J. Math. Phys.13, 194 (1969)Google Scholar
  2. 2.
    Hepp, K., Lieb, E. H.: Ann. Phys.76, 360 (1973)Google Scholar
  3. 3.
    Hepp, K., Lieb, E. H.: Helv. Phys. Acta46, 573 (1974)Google Scholar
  4. 4.
    Wreszinski, W. F.: Helv. Phys. Acta46, 844 (1974)Google Scholar
  5. 5.
    Goderis, D., Verbeure, A., Vets, P.: Non-commutative Central Limits. J. Prob. Theory Rel. Fields (to appear)Google Scholar
  6. 6.
    Goderis, D., Verbeure, A., Vets, P.: Theory of fluctuations and small oscillations for quantum lattice systems. J. Math. Phys.29, 2581 (1988)Google Scholar
  7. 7.
    Giri, N., von Waldenfels, W.: Z. Wahrscheinlichkeitstheorie Verw. Geb.42, 135 (1978)Google Scholar
  8. 8.
    Accardi, L., Bach, A.: Z. Warscheinlichkeitstheorie Verw. Geb.68, 393 (1985)Google Scholar
  9. 9.
    Cushen, C. D., Hudson, R. L.: J. Appl. Probability8, 454 (1971)Google Scholar
  10. 10.
    Bernstein, S.N.: Math. Ann.97, 1 (1926)Google Scholar
  11. 11.
    Ibramigov, I. A., Linnick, Yu.V.: Independent and stationary sequences of Random Variables, Wolters-Noordhoff, 1971Google Scholar
  12. 12.
    Haag, R., Kadison, R. V., Kastler, D.: Commun. Math. Phys.33, 1 (1973)Google Scholar
  13. 13.
    Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: Commun. Math. Phys.32, 231 (1973)Google Scholar
  14. 14.
    Manuceau, J., Sirugue, M., Rocca, F., Verbeure, A.: Quasi-free States; Cargèse Lecture Notes in Physics, Vol. 4, Kastler D. (ed.), New-York: Gordon Breach 1970Google Scholar
  15. 15.
    Manuceau, J.: Ann. Inst. H. Poincaré2, 139 (1968)Google Scholar
  16. 16.
    Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics, Vol. 1 Berlin Heidelberg New York: Springer 1979Google Scholar
  17. 17.
    Lance, C.: Tensor products of C*-algebras; C*-algebras and their applications to statistical mechanics and quantum field theory. (Proc. Int. School of Phys. “Enrico Fermi”. Amsterdam: North-Holland 1976Google Scholar
  18. 18.
    Fannes, M., Spohn, H., Verbeure, A.: J. Math. Phys.21, 355 (1980)Google Scholar
  19. 19.
    Chung, K. L.: A Course in probability theory, New York: Academic Press 1968Google Scholar
  20. 20.
    Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics, Vol. II. Berlin Heidelberg, New York: Springer 1981Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. Goderis
    • 1
    • 2
  • P. Vets
    • 1
    • 2
  1. 1.Instituut voor Theoretische FysicaUniversiteit LeuvenLeuvenBelgium
  2. 2.Onderzoeker IIKWBelgium

Personalised recommendations