Journal of Neurocytology

, Volume 24, Issue 8, pp 568–584 | Cite as

The morphology of human neuroblastoma cell grafts in the kainic acid-lesioned basal ganglia of the rat

  • A. J. Morton
  • M. N. Williams
  • P. C. Emson
  • R. L. M. Faull


Cells from a human neuroblastoma cell line (SH-SY5Y) have been used to examine their potential suitability as donor cells for neural transplantation. Grafts of SH-SY5Y cells were placed in the basal ganglia of the rat brain 7 days after kainic acid lesions of the striatum. The animals were killed 4 or 8 weeks following grafting, and light and electron microscopic studies showed that the graft formed a well-vascularized compact mass of cells in the host brain. At both time-points grafted cells showed evidence of cellular differentiation with process formation, especially at the graft-host interface where there was intermingling of graft and host neuronal process. Electron microscopic studies showed that graft cell processes containing irregularlyshaped, clear vesicles or membrane-bound dense core vesicles, established regions of specialized contact with other graft cells and formed close associations with host neuronal processes. There was little difference between the grafts of different ages, except that in the older grafts there were early signs of neurodegeneration. Since the SH-SY5Y cells used in these grafts express the enzyme tyrosine hydroxylase and synthesize dopaminein vitro, these cells were used in the hope that they may potentially be useful for repairing lesions in the dopamine pathway, such as that seen in Parkinson's disease. Our behavioural studies show that grafting SH-SY5Y cells into the striatum of rats with 6-hydroxydopamine lesions of the median forebrain bundle result in a reduction of amphetamine-induced rotation. However, this was unlikely to be due to dopamine release since there was no tyrosine hydroxylase immunoreactivity seen in the region of the grafts. Thus grafted human neuroblastoma cells survive, establish specialized morphological associations with graft and host processes and improve behavioural deficits resulting from 6-hydroxydopamine lesions. We suggest that grafted differentiated human neuroblastoma cells can interact with cells in the host brain with beneficial effects, and that in the medium-term, neuroblastoma grafts will make useful models for examining graft-host interactions. However, the presence of early degenerative changes in the older grafts suggests that neuroblastoma cells may not be suitable for long-term neural transplantation therapy for neurodegenerative diseases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldes, L. D. &Boone, T. B. (1984) A combined flatembedding, HRP histochemical method for correlative light and electron microscopic study of single neurons.Journal of Neuroscience 11, 27–34.Google Scholar
  2. Biedler, J. L., Henson, L. &Spengler, B. A. (1973) Morphology and growth, tumorigenicity and cytogenetics of human neuroblastoma cells in continuous cell culture.Cancer Research 33, 2643–52.PubMedGoogle Scholar
  3. Biedler, J. L., Roffler-Tarlov, S., Schachner, M. &Freedman, L. S. (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.Cancer Research 38, 3751–7.PubMedGoogle Scholar
  4. Björklund, A. (1993) Better cells for brain repair.Nature 362, 414–15.PubMedGoogle Scholar
  5. Björklund, A. &Stenevi, U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants.Brain Research 177, 555–60.PubMedGoogle Scholar
  6. Björklund, A., Stenevi, U., Dunnett, S. B. &Iversen, S. D. (1981) Functional reactivation of the deafferented neostriatum by nigral transplants.Nature 289, 497–9.PubMedGoogle Scholar
  7. Deckel, A. W., Robinson, R. G., Coyle, J. T. &Sanberg, P. R. (1983) Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington's disease by day 18 fetal striatal implants.European Journal of Pharmacology 93, 287–8.PubMedGoogle Scholar
  8. Dekker, A. J., Winkler, J., Ray, J., Thal, L. J. &Gage F. H. (1994) Grafting of nerve growth factor-producing fibroblasts reduces behavioural deficits in rats with lesions of the nucleus basalis magnocellularis.Neuroscience 60, 299–309.PubMedGoogle Scholar
  9. Fine, A. (1990) Transplantation of adrenal tissue into the central nervous system.Brain Research Reviews 15, 121–33.PubMedGoogle Scholar
  10. Fisher, L. J. &Gage, F. H. (1993) Grafting in mammalian central nervous system.Physiological Reviews 73, 583–616.PubMedGoogle Scholar
  11. Fisher, L. J., Jinnah, H. A., Kale, L. C., Higgins, G. A. &Gage, F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to producel-Dopa.Neuron 6, 371–80.PubMedGoogle Scholar
  12. Freed, W. J., Patel-Vaidya, U. &Geller, H. M. (1986) Properties of PC12 pheochromocytoma cells transplanted to the adult rat brain.Experimental Brain Research 63, 557–66.Google Scholar
  13. Freed, W. J., Perlow, M. J., Karoum, F., Seiger, A., Olson, L., Hoffer, B. J. &Wyatt, R. J. (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical and histochemical studies.Annals of Neurology 8, 510–19.PubMedGoogle Scholar
  14. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J.-X., Lone, T., Zhang, Y., Snyder, J. A., Wells, T. H., Ramig, L. O., Thompson, L., Mazziotta, J. C., Huang, S. C., Grafton, S. T., Brooks, D., Sawle, G., Schrofter, G. &Ansari, A. A. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12–46 months after transplantation for Parkinson's disease.New England Journal of Medicine 327, 1549–55.PubMedGoogle Scholar
  15. Gage, F. H., Wolff, J. A., Rosenberg, M. B., Xu, L., Yee, J. K., Shults, C. &Friedman, T. (1987) Grafting genetically modified cells to the brain — possibilities for the future.Neuroscience 23, 795–807.PubMedGoogle Scholar
  16. Garry, D. J., Caplan, A. L., Vawter, D. E. &Kearney, W. (1992) Are there really alternatives to the use of fetal tissue from elective abortions in transplantation research?New England Journal of Medicine 327, 1592–5.PubMedGoogle Scholar
  17. Gash, D. M., Notter, M. F. D., Okawara, S. H., Krauss, A. L. &Joynt, R. J. (1986) Amitotic neuroblastoma cells used for neural transplants in monkeys.Science 223, 1420–2.Google Scholar
  18. Groves, A. K., Barnett, S. C., Franklin, R. J. M., Crang, A. J., Mayer, M., Blakemore, W. F. &Noble, M. (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells.Nature 362, 453–5.PubMedGoogle Scholar
  19. Gupta, M., Notter, M. F. D., Felten, S. &Gash, D. M. (1985) Differentiation characteristics and human neuroblastoma cells in the presence of growth modulation and antimitotic drugs.Developmental Brain Research 19, 21–9.Google Scholar
  20. Hefti, F., Hartikka, J. &Schlump, M. (1985) Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons.Brain Research 348, 283–8.PubMedGoogle Scholar
  21. Hoffer, B. J. &Olsen, L. (1991) Ethical issues in brain-cell transplantation.Trends in Neurosciences 14, 384–8.PubMedGoogle Scholar
  22. Horellou, P., Brundin, P., Kalen, Mallet, J. &Björklund, A. (1990a)In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum.Neuron 5, 393–402.PubMedGoogle Scholar
  23. Horellou, P., Marlier, L., Privat, A. &Mallet, J. (1990b) Behavioral effect of engineered cells that synthesize L-dopa or dopamine after grafting into the rat neostriatum.European Journal of Neuroscience 2, 116–19.PubMedGoogle Scholar
  24. Horellou, P., Brundin, P., Kalen, P., Mallet, J. &Björklund, A. (1991) Grafts of genetically engineered cells with a recombinant retrovirus encoding human tyrosine hydroxylase: behavioral effects andin vivo release of dopa and dopamine in a rat model of Parkinson's disease. InIntracerebral Transplantation in Movement Disorders (edited byLindvall, O., Björklund, A. &Widner, H.) pp. 259–75. Amsterdam: Elsevier.Google Scholar
  25. Ino, M., Cole, G. M. &Timiras, P. S. (1986) Tyrosine hydroxylase and monoamine oxidase-A activity increases in differentiating human neuroblastoma after elimination of dividing cells.Developmental Brain Research 30, 120–3.Google Scholar
  26. Isacson, O., Dunnett, S. B. &Björklund, A. (1986) Graft-induced behavioural recovery in an animal model of Huntingdon's disease.Proceedings of the National Academy of Sciences (USA) 83, 2728–32.Google Scholar
  27. Isacson, O., Brundin, P., Kelly, P. A., Gage, F. H. &Björklund, A. (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum.Nature 311, 458–60.PubMedGoogle Scholar
  28. Jaeger, C. B. (1985) Immunocytochemical study of PC12 cells grafted to the brain of immature rats.Experimental Brain Research 59, 615–24.Google Scholar
  29. Jalava, A., Heikkila, J., Lintunen, M., Akerman, K. &Påhlman, S. (1992) Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA).FEBS Letters 300, 114–18.PubMedGoogle Scholar
  30. Jiao, S., Gurevich, V. &Wolf, J. A. (1993) Long-term correction of rat model of Parkinson's disease by gene therapy.Nature 362, 450–3.PubMedGoogle Scholar
  31. Kassirer, J. P. &Angell, M. (1992) The use of fetal tissue in research on Parkinson's disease.New England Journal of Medicine 327, 1591–2.PubMedGoogle Scholar
  32. Kordower, J. H., Notter, M. F. D. &Cash, D. M. (1987a) Neuroblastoma cells in neural transplants: a neuroanatomical and behavioural analysis.Brain Research 417, 85–98.PubMedGoogle Scholar
  33. Kordower, J. H., Notter, M. F. D., Yeh, H. H. &Gash, D. M. (1987b) Anin vivo andin vitro assessment of differentiated neuroblastoma cells as a donor source for transplantation.Annals of the New York Academy of Sciences 495, 606–22.PubMedGoogle Scholar
  34. Lambert, D. G., Whitham, E. M., Baird, J. G. &Nahorski, S. R. (1990) Different mechanisms of Ca2+entry induced by depolarization and muscarinic receptor stimulation in SH-SY5Y human neuroblastoma cells.Molecular Brain Research 8, 263–6.PubMedGoogle Scholar
  35. Leli, U., Shea, T. B., Cataldo, A., Hauser, G., Grynspan, F., Beermann, M. L., Liepkalns, V. A., Nixon, R. A. &Parker, P. J. (1993) Differential expression and subcellular localisation of protein kinase C a, b, g, d and e isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation.Journal of Neurochemistry 60, 289–98.PubMedGoogle Scholar
  36. Lindvall, O. (1989) Transplantation into the human brain: present status and future possibilities.Journal of Neurology, Neurosurgery and Psychiatry 491 (Supplement), 39–54.Google Scholar
  37. Lo Presti, P., Poluha, W., Poluha, D. K., Drinkwater, E. &Ross, A. H. (1992) Neuronal differentiation triggered by blocking cell proliferation.Cell Growth and Differentiation 3, 627–35.PubMedGoogle Scholar
  38. Madrazo, I., Franco-Bourland, R., Aguilera, M., Ostrosky-Solis, F., Cuevas, C., Castrejon, H., Magallon, E. &Mardrazo, M. (1991) Development of human neural transplantation.Neurosurgery 29, 165–77.PubMedGoogle Scholar
  39. Mctigue, N., Cremins, J. &Halegoua, S. (1985) Nerve growth factor and other agents mediate phosphorylation and activation of tyrosine hydroxylase.Journal of Biological Chemistry 260, 9047–56.PubMedGoogle Scholar
  40. Mena, M. A., De Yebenes, J. G., Dwork, A., Fahn, S., Latov, N., Herbert, J., Flaster, E. &Slonim, D. (1989) Biochemical properties of monoamine-rich human neuroblastoma cells.Brain Research 486, 286–96.PubMedGoogle Scholar
  41. Morton, A. J., Hammond, C., Mason, W. T. &Henderson, G. (1992) Characterisation of the L- and N-type calcium channels in differentiated SH-SY5Y neuroblastoma cells: calcium imaging and single channel recording.Molecular Brain Research,13, 53–61.PubMedGoogle Scholar
  42. Påhlman, S., Ruusala, A., Abrahamsson, L., Mattsson, M. E. K. &Esscher, T. (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation.Cell Differentiation 14, 135–44.PubMedGoogle Scholar
  43. Pearlman, S., Levivier, M. &Gash, D. M. (1993) Striatal implants of fetal striatum or gelfoam protect against quinolinic acid lesions of the striatum.Brain Research,613, 203–11.PubMedGoogle Scholar
  44. Pellegrino, L. J. &Cushman, A. J. (1967)A stereotaxic atlas of the rat brain. New York: Appleton-Century-Crofts.Google Scholar
  45. Przedborski, S., Levivier, M., Kostic, V., Jackson-Lewis, V., Dollison, A., Gash, D. M., Fahn, S. &Cadet, J. L. (1991) Sham transplantation protects against 6-hydroxydopamine-induced dopaminergic toxicity in rats: behavioral and morphological evidence.Brain Research 550, 231–8.PubMedGoogle Scholar
  46. Schallert, T. &Jones, T. A. (1993) ‘Exuberant’ neuronal growth after brain damage in adult rats: the essential role of behavioral experience.Journal of Neural Transplantation and Plasticity 4, 193–8.PubMedGoogle Scholar
  47. Spencer, D. D., Robbins, R. J., Naftolin, F., Marek, K. L., Vollmer, T., Leranth, C., Roth, R. H., Price, L. H., Gjedde, A., Bunney, B. S., Sass, K. J., Elsworth, J. D., Kier, L., Makuch, R., Hoffer, P. B. &Redmond, D. E. (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease.New England Journal of Medicine 327, 1541–8.PubMedGoogle Scholar
  48. Strauss, S., Otten, U., Joggerst, B., Pluss, K. &Volk, B. (1994) Increased levels of nerve growth-factor (NGF) protein and messenger-RNA and reactive gliosis following kainic acid injection into the rat striatum.Neuroscience Letters 168, 193–6.PubMedGoogle Scholar
  49. Tuszynski, M. H., Peterson, D. A., Ray, J., Baird, A., Nakahara, Y. &Gage, F. H. (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord.Experimental Neurology 126, 1–14.PubMedGoogle Scholar
  50. Uchida, K., Takamatsu, K., Kaneda, N., Toya, S., Tsukada, Y., Kurosawa, Y., Fujita, K., Nagatsu, T. &Kohsaka, S. (1989) Synthesis of L-3,4-dihydroxyphenylalamine by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting.Journal of Neurochemistry 53, 728–32.PubMedGoogle Scholar
  51. Ungerstedt, U. &Arbuthnott, G. W. (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system.Brain Research 24, 485–93.PubMedGoogle Scholar
  52. Widner, H., Tetrud, J., Rehngrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O. &Langston, J. W. (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP).New England Journal of Medicine 327, 1556–63.PubMedGoogle Scholar
  53. Wojcik, B. E., Nothias, F., Lazar, M., Jouin, H., Nicolas, J.-F. &Peschanski, M. (1993) Catecholamine neurons result from intracerebral implantation of embryonic carcinoma cells.Proceedings of the National Academy of Sciences (USA) 90, 1305–9.Google Scholar
  54. Zabek, M., Mazurowski, W., Dymecki, J., Stelmachow, J. &Zawada, E. (1994) A long term follow-up of fetal dopaminergic transplantation into the brains of three parkinsonian patients.Restorative Neurology and Neuroscience 6, 97–106.Google Scholar

Copyright information

© Chapman and Hall 1995

Authors and Affiliations

  • A. J. Morton
    • 1
    • 3
  • M. N. Williams
    • 2
  • P. C. Emson
    • 1
  • R. L. M. Faull
    • 2
  1. 1.MRC Molecular Neuroscience GroupThe Babraham InstituteBabrahamUK
  2. 2.Department of Anatomy, School of MedicineUniversity of AucklandAucklandNew Zealand
  3. 3.Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations