Journal of Fourier Analysis and Applications

, Volume 5, Issue 6, pp 563–573

Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℝn

  • Lawrence W. Baggett
  • Herbert A. Medina
  • Kathy D. Merrill
Article

Abstract

An abstract formulation of generalized multiresolution analyses is presented, and those GMRAs that come from multiwavelets are characterized. As an application of this abstract formulation, a constructive procedure is developed, which produces all wavelet sets innrelative to an integral expansive matrix.

Math subject classifications

Primary 46N99 47N40 47N99 secondary 47D25 47C05 47D15 46B28 

Keywords and phrases

wavelet wavelet set multi-resolution analysis unitary representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baggett, L., Carey, A., Moran, W., and Ohring, P. (1995). General existence theorems for orthonormal wavelets, an abstract approach,Publ. Res. Inst. Math. Sci. Kyoto Univ.,31(1), 95–111.Google Scholar
  2. [2]
    Dai, X. and Larson, D.R. (1998). Wandering vectors for unitary systems and orthogonal wavelets,Mem. AMS,134(640).Google Scholar
  3. [3]
    Dai, X., Larson, D.R., and Speegle, D. (1997). Wavelet sets in ℝn,J. Fourier Anal. Appl.,3, 451–456.Google Scholar
  4. [4]
    Dai, X., Larson, D.R., and Speegle, D. (1998). Wavelet sets in ℝn, IIContemp. Math.,216, 15–40.Google Scholar
  5. [5]
    Halmos, P. (1951).Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Co., New York.Google Scholar
  6. [6]
    Helson, H. (1986).The Spectral Theorem, Springer-Verlag, New York.Google Scholar
  7. [7]
    Mackey, G. (1976).The Theory of Unitary Group Representations, University of Chicago, Chicago.Google Scholar
  8. [8]
    Stone, M.H. (1932). Linear transformations in Hilbert space and their applications to analysis,Amer. Math. Soc. Google Scholar
  9. [9]
    Soardi, P. and Weiland, D. Single wavelets inn dimensionsJ. Fourier Anal. Appl., to appear.Google Scholar

Copyright information

© Birkhäuser 1999

Authors and Affiliations

  • Lawrence W. Baggett
    • 1
  • Herbert A. Medina
    • 2
  • Kathy D. Merrill
    • 3
  1. 1.Department of MathematicsUniversity of Colorado at BoulderBoulder
  2. 2.Department of MathematicsLoyola Marymount UniversityLos Angeles
  3. 3.Department of MathematicsColorado CollegeColorado Springs

Personalised recommendations