Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species

  • M. Camps
  • P. H. Kelly
  • J. M. Palacios
Full Papers


Dopamine D 1 and D 2 receptor distributions were studied in the brain of the mouse, rat, guinea pig, cat and monkey by means of in vitro quantitative autoradiography using [3H]SCH 23390 and [3H]CV 205–502 to label D 1 and D 2 subtypes respectively.

The distribution of both subtypes of receptors was similar within the basal ganglia of all species investigated. The highest densities for both subtypes were found in the nucleus caudatus, putamen, nucleus accumbens, olfactory tubercle and substantia nigra.

Outside of the basal ganglia, differences in the distribution of both receptors were found among the species examined in regions such as cerebellum, cortex, hippocampus, superior colliculus and olfactory bulb.

In all species D 1 receptor densities were higher than those of D 2. The absolute amount of both subtypes, however, varied among species.

These results indicate that dopamine receptor distribution is well preserved in the basal ganglia during evolution, although differences among species exist in their distribution outside the basal ganglia and their absolute amount.


D1 D2 dopamine receptors monkey cat guinea pig basal ganglia hippocampus cerebellum 

Abbreviations used in figures


corpus amygdalae


nucleus accumbens

CA 1

CA 1 subfield of the hippocampus

CA 2

CA 2 subfield of the hippocampus


cingular cortex




nucleus caudatus






dentate gyrus of the hippocampus


nucleus entopeduncularis


globus pallidus


globus pallidus, pars lateralis


globus pallidus, pars medialis


granular layer of the cerebellum


nucleus interpeduncularis


lateral septum


molecular layer of the cerebellum


olfactory tubercle


Purkinje cell layer of the cerebellum




superior colliculus


substantia nigra, pars compacta


substantia nigra, pars reticulata


area ventralis tegmentalis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Postmortem distribution of dopamine and homovanillic acid in human brain, variations related to age review of the literature. J Neural Transm 45: 81–105PubMedGoogle Scholar
  2. Aiso M, Shigematsu K, Kebabian W, Potter WZ, Cruciani RA, Saavedra JM (1987) Dopamine D 1 receptors in rat brain: a quantitative autoradiographic study with125I-SCH 23982. Brain Res 408: 281–285PubMedGoogle Scholar
  3. Altar CA, O'Neil S, Walter RJ Jr, Marshall JF (1984) Brain dopamine and serotonin receptor site revealed by digital subtraction autoradiography. Science 228: 597–600Google Scholar
  4. Altar A, Wamsley AM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D 2 and S 2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 16: 517–525PubMedGoogle Scholar
  5. Altar CA, Marien MR (1987) Picomolar affinity of125I SCH 23982 for D 1 receptors in brain demonstrated with digital subtraction autoradiography. J Neurosci 7: 213–222PubMedGoogle Scholar
  6. Anden NE, Carlsson A, Dahlström A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3: 523–530Google Scholar
  7. Battista A, Fuxe K, Goldstein M, Ogawa M (1971) Mapping of central monoamine neurons in the monkey. Experientia 28: 688–690Google Scholar
  8. Baudry M, Martres MP, Schwartz JC (1979) (3H) domperidone: a selective ligand for dopamine receptors. Naunyn Schmiedebergs Arch Pharmacol 308: 231–237PubMedGoogle Scholar
  9. Bertler A, Rosengren E (1959) Occurrence and distribution of catecholamines in brain. Acta Physiol Scand 47: 350–361PubMedGoogle Scholar
  10. Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterization of the binding of (3H) SCH 23390, a selective D 1 receptor antagonist ligand in rat striatum. Life Sci 35: 1885–1893PubMedGoogle Scholar
  11. Bird ED, Iversen LL (1982) Human brain postmortem studies of neurotransmitters and related markers. In: Lajtha A (ed) Handbook of neurochemistry, vol 2, 2nd edn. Plenum Press, pp 255–251Google Scholar
  12. Bischoff S, Scatton B, Korf J (1979) Biochemical evidence for a transmitter role of dopamine in the rat hippocampus. Brain Res 165: 161–165PubMedGoogle Scholar
  13. Bischoff S, Bittiger H, Krauss J (1980) In vivo (3H)spiperone binding to the rat hippocampal formation: involvement of dopamine receptors. Eur J Pharmacol 68: 305–315PubMedGoogle Scholar
  14. Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS. Elsevier, Amsterdam, pp 55–123Google Scholar
  15. Bouthenet ML, Sales N, Schwartz JC (1985) Autoradiographic localisation of (3H)apomorphine binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol: 1–8Google Scholar
  16. Boyson SJ, McGonigle P, Molinoff PB (1986) Quantitative autoradiographic distribution of D 1 and D 2 subtypes of dopamine receptors in rat brain. J Neurosci 6 (11): 3177–3188PubMedGoogle Scholar
  17. Brodal A (1981) Neurological anatomy, Chapter 12. The cerebral cortex, 3rd edn. Oxford University Press, Oxford New York, pp 788–852Google Scholar
  18. Camps M, Cortes R, Gueye B, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28: 275–290PubMedGoogle Scholar
  19. Camus A, Javoy-Agid F, Dubois A, Scatton B (1986) Autoradiographic localization and quantification of dopamine D 2 receptors in normal human brain with (3H) N-n-propylnorapomorphine. Brain Res 375: 135–149PubMedGoogle Scholar
  20. Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydro-xytyramine in brain. Science 127: 471PubMedGoogle Scholar
  21. Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoarnines. Acta Physiol Scand 56 (196): 1–27Google Scholar
  22. Carlsson A, Lindqvist J (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144Google Scholar
  23. Charuchinda C, Supavilai P, Karobath M, Palacios JM (1987) Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand. J Neurosci 7 (5): 1352–1360PubMedGoogle Scholar
  24. Cortés R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in human brain: brainstem. Neuroscience 12: 1003–1026PubMedGoogle Scholar
  25. Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D 1 sites. Neuroscience 28: 263–273PubMedGoogle Scholar
  26. Covelli V, Memo M, Spano PF, Trabuchi M (1981) Characterization of dopamine receptors in various species of invertebrates and vertebrates. Neuroscience 6: 2077–2079PubMedGoogle Scholar
  27. Creese I, Steward K, Snyder SH (1987) Species variations in dopamine receptor binding. Eur J Pharmacol 60: 55–66Google Scholar
  28. Crow TJ, Deakin JFW, Johnstone EC, Longden A (1976) Dopamine and schizophrenia. Lancet 2: 565–566Google Scholar
  29. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system 1: demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62 [Suppl 232]: 1–55Google Scholar
  30. Dawson TM, Gehlert DR, Yamamura HI, Barnett A, Wamsley JK (1985) D 1 dopamine receptors in the rat brain: autoradiographic localization using (3H)SCH 23390. Eur J Pharmacol 108: 323–325PubMedGoogle Scholar
  31. Dawson TM, Barone P, Sidhu A, Wamsley JK, Chase TN (1986) Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: use of125I SCH 23982. Neurosci Lett 68: 216–266PubMedGoogle Scholar
  32. DeKeyser J, DeBacker JP, Ebinger G, Vauquelin G (1985) Regional distribution of the dopamine D 2 receptors in the mesotelencephalic dopamine neuron system of human brain. J Neurol Sci 71: 119–127PubMedGoogle Scholar
  33. Dietl MM, Palacios JM (1988) Neurotransmitter receptors in the avian brain: dopamine receptors. Brain Res 439: 354–359PubMedGoogle Scholar
  34. Divac I, Björklund A, Lindvall O, Passingham RE (1978) Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. J Comp Neurol 180: 59–72PubMedGoogle Scholar
  35. Dolphin A, Hamont M, Bockaert J (1979) The resolution of dopamine and beta1 and beta2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex. Brain Res 179: 305–317PubMedGoogle Scholar
  36. Dubé L, Parent A (1981) The monoamine containing neurons in avian brain: a study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J Comp Neurol 196: 695–708PubMedGoogle Scholar
  37. Dubois A, Savasta M, Curet O, Scatton B (1986) Autoradiographic distribution of the D 1 agonist (3H)SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D 2 dopamine receptors. Neuroscience 19 (1): 125–137PubMedGoogle Scholar
  38. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamine (3-methoxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38: 1236–1239PubMedGoogle Scholar
  39. Felten D, Sladek JR Jr (1982) Monoamine distribution in primate brain. Monoaminergic nuclei: anatomy, pathways, and local organization. Brain Res 9: 253–254Google Scholar
  40. Fuxe K (1963) Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Acta Physiol Scand 58: 383–384PubMedGoogle Scholar
  41. Fuxe K, Ljunggern L (1965) Cellular localization of the monoamines in the upper brainstem of the pigeon. J Comp Neurol 148: 61–90Google Scholar
  42. Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. J Neurol Sci 58: 247–267PubMedGoogle Scholar
  43. Govoni S, Rius RA, Battaini F, Spano PF, Trabuchi M (1986) Dopaminergic receptor regulation and protein phosphorilation during aging. In: Vezzadini P, Facchini A, Labo G (eds) Neuroendocrine system and aging. Eurage, Milano, pp 147–152Google Scholar
  44. Greengard P (1986) Protein phosphorylation and neuronal function. In: Costa E (ed) Fidia Research Foundation, neuroscience award lectures. Liviana Press, Padova, pp 52–100Google Scholar
  45. Hemmings HC Jr, Nairn AC, Aswad DW, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamineinnervated brain regions. J Neurosci 4: 99–110PubMedGoogle Scholar
  46. Herrling PL (1981) The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists. Brain Res 212: 331–343PubMedGoogle Scholar
  47. Hornykievicz O (1966) Dopamine (3-methoxytyramine) and brain function. Pharmacol Rev 18: 565–566Google Scholar
  48. Hornykievicz O (1972) Dopamine and its physiological significance in brain function. In: Bourne GH (ed) The structure and function of the nervous tissue, vol 6. Academic Press, New York, pp 367–415Google Scholar
  49. Hornykievicz O (1973) Dopamine in the basal ganglia, its role and therapeutic implications (including the clinical use of L-Dopa). Br Med Bull 29: 172–178PubMedGoogle Scholar
  50. Hoyer D (1988) Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res 8: 59–81PubMedGoogle Scholar
  51. Jastrow TR, Richfield E, Gnegy M (1984) Quantitative autoradiography of (3H)sulpiride binding sites in rat brain. Neurosci Lett 51: 47–53PubMedGoogle Scholar
  52. Javoy-Agid F, Taquet H, Ploska A, Cherif-Zahar C, Ruberg M, Agid Y (1981) Distribution of catecholamines in the ventral mesencephalon of human brain with special reference to Parkinson's disease. J Neurochem 36: 2101–2105PubMedGoogle Scholar
  53. Joyce JN, Sapp DW, Marshall JF (1986) Human striatal dopamine receptors are organized in compartments. Proc Natl Acad Sci 83: 8002–8006PubMedGoogle Scholar
  54. Juorio AV, Vogt M (1967) Monoamines and their metabolites in the avian brain. J Physiol 189: 489–518PubMedGoogle Scholar
  55. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 227: 93–96Google Scholar
  56. Kizer JS, Palkovits M, Brownstein MJ (1976) The projections of the A 8, A 9 and A 10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108: 363–370PubMedGoogle Scholar
  57. Köhler C, Radesäter AC (1986) Autoradiographic visualization of dopamine D 2 receptors in the monkey brain using the selective benzamide drug (3H)raclopride. Neurosci Lett 66: 85–90PubMedGoogle Scholar
  58. Lindvall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen L, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 9. Plenum Press, New York, pp 139–231Google Scholar
  59. Lorez HP, Burkard WP (1979) Absence of dopamine sensitive adenylate cyclase in the A 10 region, the origin of mesolimbic dopamine neurones. Experientia 35: 744–745PubMedGoogle Scholar
  60. Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Karger, BaselGoogle Scholar
  61. Martres MP, Sales N, Bouthenet ML, Schwartz JC (1985) Localization and pharmacological characterization of D 2 dopamine receptors in rat cerebral neocortex and cerebellum using125I-Iodosulpride. Eur J Pharmacol 118: 211–219PubMedGoogle Scholar
  62. Montagu KA (1957) Catechol compounds in rat tissues and in brains of different animals. Nature 180: 244–245PubMedGoogle Scholar
  63. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–270PubMedGoogle Scholar
  64. Nieuwenhuys R, Voogd J, Van Huijzen C (1981) The human central nervous system. A synopsis and atlas, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  65. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas I, Greengard P (1984) DARPP-32, a dopamine and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. J Neurosci 4: 111–124PubMedGoogle Scholar
  66. Palacios JM, Pazos A (1986) Visualization of dopamine receptors: a progress review. In: Creese I, Frazer C (eds) Structure and function of dopamine receptors. Alan R Liss, New York, pp 175–197Google Scholar
  67. Palacios JM, Camps M, Cortés R, Charuchinda C (1988) Characterization and distribution of brain dopamine receptors. In: Jancovic S, Tolosa E (eds) Advances in Parkinson's disease and movement disorders. Urban and Schwarzenberg, Baltimore, pp 27–36Google Scholar
  68. Parent A, Poitras D, Dubè L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS. Elsevier, Amsterdam, pp 409–439Google Scholar
  69. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  70. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8: 3–32PubMedGoogle Scholar
  71. Reinoso-Suarez F (1961) Topographischer Hirnatlas der Katze für experimental-physiologische Untersuchungen. E. Merck AG, DarmstadtGoogle Scholar
  72. Richfield EK, Debowey DL, Penney JB, Young AM (1987) Basal ganglia and cerebral cortical distribution of dopamine D 1 and D 2 receptors in neonatal and adult cat brains. Neurosci Lett 73: 203–208PubMedGoogle Scholar
  73. Richfield EK, Young AB, Penney JB (1987a) Comparative distribution of dopamine D 1 and D 2 receptors in the basal ganglia of turtles, pigeons, rats, cats and monkeys. J Comp Neurol 262: 446–463PubMedGoogle Scholar
  74. Rose JE, Woolsey CN (1949) Organization of the mammalian thalamus and its relation to the cerebral cortex. Electroencephalogr Clin Neurophysiol 1: 391–403Google Scholar
  75. Savasta M, Dubois A, Scatton B (1986) Autoradiographic localization of D 1 dopamine receptors in the rat brain with (3H)SCH 23390. Brain Res 375: 291–301PubMedGoogle Scholar
  76. Scatton B, Simon H, LeMoal M, Bischoff S (1980) Origin of the dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18: 125–131PubMedGoogle Scholar
  77. Scott TG (1965) The specificity of 5′-nucleotidase in the brain of the mouse. J Histochem Cytochem 13: 657–667PubMedGoogle Scholar
  78. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313PubMedGoogle Scholar
  79. Sidman LR, Angevine JB Jr, Taber Pierce E(1971) Atlas of the mouse brain and spinal cord. Harvard University Press, CambridgeGoogle Scholar
  80. Stanzione P, Calabresi P, Mercuri N, Bernardi G (1984) Dopamine modulates CA 1 hippocampal neurons by elevating the threshold for spike generation: an in vitro study. Neuroscience 13: 1105–1116.PubMedGoogle Scholar
  81. Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9: 321–353PubMedGoogle Scholar
  82. Tanaka C, Ishikawa M, Shimada S (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res Bull 9: 255–270PubMedGoogle Scholar
  83. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 82: 367, 1–48.Google Scholar
  84. Yamamoto T, Kebabian JW (1987) Occurrence of the D 1 dopamine receptor in the substantia nigra of several mammalian species: identification in binding studies using (125I) SCH 23982. Brain Res 407: 398–400PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Camps
    • 1
  • P. H. Kelly
    • 1
  • J. M. Palacios
    • 1
  1. 1.Preclinical ResearchSandoz AGBaselSwitzerland

Personalised recommendations