On the problem of two linearized wells

  • A. DeSimone
  • G. Friesecke
Article

Abstract

We study the behaviour of sequences of elastic deformationsyΩ ⊂ ℝn → ℝn whose gradients approach two linearized wells, and give an application to magnetostriction.

Mathematics subject classification

49J45 49N60 73C50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AF]
    E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal.86, 125–145 (1984)Google Scholar
  2. [Ba]
    J.M. Ball: A version of the fundamental theorem for Young measures. In: PDE's and continuum models of phase transitions, Lecture Notes in Physics 344, M. Rascle et al. (eds.) pp. 207–215. Springer, Berlin Heidelberg New York, 1989Google Scholar
  3. [BFJK]
    K. Bhattacharya, N.B. Firoozye, R.D. James, R.V. Kohn: Restrictions on microstructure. Proc. R. Soc. Edinb.124A, 843–878 (1994)Google Scholar
  4. [BJ1]
    J.M. Ball, R.D. James: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal.100, 13–52 (1987)Google Scholar
  5. [BJ2]
    J.M. Ball, R.D. James: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. London A338, 389–450 (1992)Google Scholar
  6. [Br]
    W.F. Brown: Micromagnetics. Interscience, John Wiley and Sons, 1963Google Scholar
  7. [Da]
    B. Dacorogna: Direct methods in the calculus of variations. Springer, Berlin Heidelberg New York, 1988Google Scholar
  8. [De]
    A. DeSimone: Magnetostrictive solids: macroscopic response and microstructure evolution under applied magnetic fields and loads. J. Intelligent Mat. Systems and Structures5, 787–794 (1994)Google Scholar
  9. [DF]
    A. DeSimone, G. Friesecke (In preparation)Google Scholar
  10. [DL]
    G. Duvaut, J.L. Lions: Les inéquations en mécanique et en physique. Dunod, 1972Google Scholar
  11. [DM]
    G. Dolzmann, S. Müller: Microstructures with finite surface energy: the two-well problem. Arch. Rat. Mech. Anal, (in press)Google Scholar
  12. [Ev]
    L.C. Evans: Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conf. Ser. in Mathematics 74. AMS, Providence, 1990Google Scholar
  13. [Fr]
    G. Friesecke: A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. Proc. R. Soc. Edinb.124A, 437–471 (1994)Google Scholar
  14. [Gu]
    M.E. Gurtin: The linear theory of elasticity. In: Handbuch der Physik VIa/2, S. Flügge (ed.) pp. 1–295. Springer, Berlin Heidelberg New York, 1972Google Scholar
  15. [Hö]
    L. Hörmander: Linear partial differential operators. Springer, Berlin Heidelberg New York, 1969Google Scholar
  16. [Ki]
    D. Kinderlehrer: Remarks about equilibrium configurations of crystals. In: Material Instabilities in Continuum Mechanics, Heriot-Watt Symposium, J.M. Ball (ed.) pp. 217–242. Oxford University Press, 1988Google Scholar
  17. [KL]
    R.V. Kohn, V. Lods (In preparation)Google Scholar
  18. [Ko]
    R.V. Kohn: The relaxation of a double-well energy. Cont. Mech. Thermodynamics3, 193–236 (1991)Google Scholar
  19. [KP1]
    D. Kinderlehrer, P. Pedregal: Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal.115, 329–365 (1991)Google Scholar
  20. [KP2]
    D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal.4, 59–90 (1994)Google Scholar
  21. [Ma]
    J.P. Matos: Young measures and the absence of fine microstructures in a class of phase transitions. Eur. J. Applied Math.3, 31–54 (1992)Google Scholar
  22. [Re]
    Yu. G. Reshetnyak: Spaces of mappings with bounded distortion. AMS, Providence, 1989Google Scholar
  23. [Sv]
    V. Šverák: On the problem of two wells. In: Microstructure and phase transitions, D. Kinderlehrer et al. (eds.). Springer, Berlin Heidelberg New York, 1994Google Scholar
  24. [Ta]
    L. Tartar: Some remarks on separately convex functions. In: Microstructure and phase transitions, D. Kinderlehrer et al. (eds.) Springer, Berlin Heidelberg New York, 1994Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. DeSimone
    • 1
  • G. Friesecke
    • 2
  1. 1.Dipartimento di Ingegneria CivileUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Mathematisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations