, Volume 64, Issue 3, pp 254–266 | Cite as

Induction of polarity inFucus eggs by potassium ion gradients

  • Friedrich Bentrup
  • Tadashi Sandan
  • Lionel Jaffe


Establishment of steady differences of 20 to 40 millimolar potassium ion acrossFucus eggs induces about 35% orientation of the rhizoidal poles toward the high potassium end.

We argue that the potassium gradient acts by way of a transcytoplasmic voltage gradient.

We describe a method for establishing known and steady concentration gradients across each of large numbers of developing cells.

Establishment of steady hydrogen ion gradients acrossFucus eggs induces an orientation of the rhizoidal poles toward the more acid end. Per cent orientation equals 1.5 times per cent hydrogen ion gradient.


Hydrogen Potassium Concentration Gradient Cent Hydrogen High Potassium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bentrup, F., and L. Jaffe, 1967: Analyzing the “Group Effect”: Rheotropic Responses of DevelopingFucus Eggs. Protoplasma (in Press).Google Scholar
  2. Bünning, E., 1958: PolaritÄt und inÄquale Teilung des pflanzlichen Protoplasten. Protoplasmatologia 8 (no. 9a), Wien: Springer.Google Scholar
  3. Dainty, J., 1962: Ion Transport and Electrical Potentials in Plant Cells. Ann. Rev. Plant Physiol.13, 379–402.Google Scholar
  4. —, 1964: Physiological Aspects of Ion Transport in Plant Cells and Tissues. In: “The Cellular Functions of Membrane Transport” (J. Hoffmann, ed.), Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  5. Hodgkin, A. L., and B. Katz, 1949: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol.108, 37.Google Scholar
  6. Jaffe, L., 1958: Tropistic Responses of Zygotes of the Fucaceae to Polarized Light. Exp. Cell Res.15, 282–299.PubMedGoogle Scholar
  7. —, 1966: Electrical Currents through the DevelopingFucus Egg. Proc. Natl. Acad. Sci. (Wash.)56, 1102–1109.Google Scholar
  8. —, and H. Etzold, 1962: Orientation and Locus of Tropic Photoreceptor Molecules in Spores ofBotrytis andOsmunda. J. Cell Biol.13, 13–31.PubMedGoogle Scholar
  9. Lund, E. J., 1923: Electric Control of Organic Polarity in the Egg ofFucus. Bot. Gaz.76, 288–301.Google Scholar
  10. MacRobbie, E. A. C., and J. Dainty, 1958: Sodium and Potassium Distribution and Transport in the SeaweedRhodymenia palmata (L.) Grev. Physiol. Plant.11, 782.Google Scholar
  11. Müller, D., and L. Jaffe, 1965: A Quantitative Study of Cellular Rheotropism. Biophys. J.5, 317–335.Google Scholar
  12. Oda, K., 1962: Polarized and Depolarized States of the Membrane inChara Braunii. Sci. Rep. Tohoku Univ. Ser. IV (Biol.)28, 1–16.Google Scholar
  13. Slayman, C. L., 1965: Electrical Properties ofNeurospora crassa. J. Gen. Physiol.49, 69–92.PubMedGoogle Scholar
  14. Spek, J., 1930: ZustandsÄnderungen der Plasmakolloide bei Befruchtung und Entwicklung desNereis-Eies. Protoplasma9, 370–425.Google Scholar
  15. Went, F. W., 1932: Eine botanische PolaritÄtstheorie. Jahrb. Wiss. Bot.76, 528–554.Google Scholar
  16. Whitaker, D. M., 1938: The Effect of Hydrogen Ion Concentrations upon the Induction of Polarity inFucus eggs. III. J. Gen. Physiol.21, 833–845.Google Scholar
  17. —, and W. E. Berg, 1944: The Development ofFucus Eggs in Concentration Gradients: A New Method for Establishing Steep Gradients Across Living Cells. Biol. Bull.86, 125–129.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Friedrich Bentrup
    • 1
  • Tadashi Sandan
    • 1
  • Lionel Jaffe
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations