Journal of Neural Transmission

, Volume 49, Issue 4, pp 229–245

Circadian rhythmicity of the activity of hydroxyindole-o-methyl transferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina, and harderian gland of the golden hamster

  • P. Pévet
  • M. G. M. Balemans
  • W. C. Legerstee
  • B. Vivien-Rœls


The day and night rhythms in the activity of HIOMT in the formation of melatonin and of 5-methoxytryptophol have been determined in the pineal, retina and Harderian gland of the adult male golden hamster.

In all hamsters used there was no detectable HIOMT activity in the deep pineal. In the superficial pineal HIOMT activity, involved in the synthesis of melatonin (Mel), was observed to be high at the end of the dark period and at the middle of the light period. Considering the HIOMT activity involved in the production of 5-methoxytryptophol (5-MTL), an increase in 5-MTL synthesis was observed only during the light period. Comparing the peak of Mel-production with that of 5-MTL it appears that during the light period the pineal produces more 5-MTL than Mel.

In the Harderian glands, the circadian course of HIOMT activity involved in the synthesis of Mel seems to run parallel to that of the enzyme implicated in 5-MTL synthesis, both being stimulated at the end of the dark period. The activity of HIOMT in 5-MTL production is, however, always approximately 2 times higher than for Mel synthesis.

In the retina the synthesis of Mel and 5-MTL is not significantly higher during the dark period than during the light period. However, the production of 5-MTL is larger than that of Mel.

It appears that (1) with the exception of the end of the dark period, the extra-pineal synthesis of Mel and 5-MTL is always higher than that in the pineal; (2) the circadian synthesis of 5-methoxyindoles is different in each organ, and (3) in the pineal the circadian activity of HIOMT involved in 5-MTL formation is different from that of the same enzyme involved in the formation of Mel. The results are discussed.

Key words

Melatonin 5-methoxytryptophol HIOMT pineal retina Harderian gland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariëns Kappers, J., Pévet, P.: The pineal gland of vertebrates including man. Progr. Brain Res.52 (1979).Google Scholar
  2. Balemans, M. G. M. Age-dependent effects of 5-methoxytryptophol and melatonin on testes and comb growth of the white leghorn (Gallus domesticus, L.). J. Neural Transm.33, 179–194 (1972).PubMedGoogle Scholar
  3. Balemans, M. G. M. The stimulatory effects of several concentrations of 5-methoxytryptophol on testicular growth in the white leghorn (Gallus domestkus, L.). J. Neural Transm.34, 49–60 (1973 a).PubMedGoogle Scholar
  4. Balemans, M. G. M. The inhibitory effect of 5-methoxytryptophol on ovarian weight, follicular growth and egg production of adult white leghorn hens (Gallus domesticus, L.). J. Neural Transm.34, 159–169 (1973 b).PubMedGoogle Scholar
  5. Balemans, M. G. M.: The pineal gland. A study on the presence and the biological significance of melatonin and 5-methoxytryptophol. Thesis, Utrecht, 1974.Google Scholar
  6. Balemans, M. G. M., Bary, F. A. M., Legerstee, W. C.: Seasonal variations in HIOMT activity during the night in the pineal gland of rats of several ages. Melatonin Symposium, September 28–30, Bremen, Federal Republic of Germany (1980a).Google Scholar
  7. Balemans, M. G. M., Legerstee, W. C., Van Benthem, J. Day and light rhythms in the methylation of N-acetylserotonin/5-hydroxytryptophol in the pineal gland of male rats of different ages. J. Neural Transm.45, 265–272 (1979).PubMedGoogle Scholar
  8. Balemans, M. G. M., Noordegraaf, E. M., Bary, F. A. M., Van Berlo, M. F. Estimation of the methylating capacity of the pineal gland. With special reference to indole metabolism. Experientia (Basel)34, 887–888 (1978 a).Google Scholar
  9. Balemans, M. G. M., Bary, F. A. M., Legerstee, W. C., Van Benthem, J. Estimation of the methylating capacity of the pineal gland of the rat with special reference to the methylation of N-acetylserotonin and 5-hydroxytryptophol separately. Experientia (Basel)34, 1434–1435 (1978 b).Google Scholar
  10. Balemans, M. G. M., Pévet, P., Legerstee, W. C., Neva, E. Melatonin and 5-methoxytryptophol synthesis in the pineal, the retina and the Harderian gland of the mole-rat (Spalax ehrenbergi, Nehring) and in the pineal of the mouse “eyeless”. J. Neural Transm.49, 247–255 (1980 b).PubMedGoogle Scholar
  11. Benson, B. Current status of pineal peptides. Neuroendocrinology24, 241 to 258 (1977).Google Scholar
  12. Benson, B., Krasovich, M. Circadian rhythm in the number of granulated vesicles in the pinealocytes of mice. Effect of sympathectomy and melatonin treatment. Cell Tiss. Res.184, 499–506 (1977).Google Scholar
  13. Berndtson, W. E., Desjardins, C. Circulating LH and FSH levels and testicular function in hamsters during light deprivation and subsequent photoperiodic stimulation. Endocrinology95, 195–199 (1974).PubMedGoogle Scholar
  14. Bridges, R., Tamarkin, L., Goldman, B. Effects of photoperiod and melatonin on reproduction in the Syrian hamster. Ann. Biol. Anim. Biochem. Biophys.16, 399–408 (1976).Google Scholar
  15. Cardinali, D. P., Rosner, J. M. Retinal localization of the hydroxyindole-O-methyltransferase (HIOMT) in the rat. Endocrinology89, 301–303 (1971).PubMedGoogle Scholar
  16. Cardinali, D. P., Rosner, J. M. Ocular distribution of hydroxyindole-O-methyltransferase (HIOMT) in the duck (Anas platyrbincbos). Gen. comp. Endocrinol.18, 407–409 (1972).PubMedGoogle Scholar
  17. Cardinali, D. P., Wurtman, R. J. Hydroxyindole-O-methyltransferase in rat pineal, retina and Harderian gland. Endocrinology91, 247–252 (1972).PubMedGoogle Scholar
  18. Eichler, V. B., Moore, R. Y. Studies on hydroxyindole-O-methyltransferase in frog brain and retina: enzymology, regional distribution and environmental control of enzyme levels. Comp. Biochem. Physiol.50c, 89–95 (1975).Google Scholar
  19. Flight, W. F. G.: On the pineal body of the urodele,Diemictylus viridescens. Thesis, Univ. of Utrecht, 1975.Google Scholar
  20. Flight, W. F. G. Morphological and functional comparison between the retina and the pineal organ of lower vertebrates. In: The Pineal Gland of Vertebrates Including Man (Ariëns Kappers, J., Pévet, P., eds.), Progress in Brain Research, Vol. 52, pp. 131–139. Amsterdam: Elsevier/North-Holland Biomed. Press. 1979.Google Scholar
  21. Freire, F., Cardinali, D. P. Effects of melatonin treatment and environmental lighting on the ultrastructural appearance, melatonin synthesis, norepinephrine turnover and microtubule protein content of the rat pineal gland. J. Neural Transm.37, 237–257 (1975).PubMedGoogle Scholar
  22. Gern, W. A., Owens, D. W., Ralph, Ch. L. The synthesis of melatonin by the trout retina. J. exp. Zool.206, 263–269 (1978).Google Scholar
  23. Hoffmann, K. Photoperiod, pineal, melatonin and reproduction in hamsters. In: The Pineal Gland of Vertebrates Including Man (Ariëns Kappers, J., Pévet, P., eds.), Progress in Brain Research, Vol. 52, pp. 397–415. Amsterdam: Elsevier/North-Holland Biomed. Press. 1979.Google Scholar
  24. Holloway, W. R., Grota, L. J., Brown, G. M. Determination of immunoreactive melatonin in the colon of the rat by immunocytochemistry. J. Histochem. Cytochem.28, 255–262 (1980).PubMedGoogle Scholar
  25. Joss, J. M. P. A rhythm in hydroxyindole-O-methyltransferase (HIOMT) activity in the scincid lizard,Lampropholas guichenoti. Gen. Comp. Endocrinol.36, 521–525 (1978).PubMedGoogle Scholar
  26. Kennaway, D. J., Frith, R. G., Phillipou, G., Matthews, C. D., Seamark, R. F. A specific radioimmunoassay for melatonin in biological tissue and fluids and its validation by gas chromatography-mass spectrometry. Endocrinology101, 119–127 (1977).PubMedGoogle Scholar
  27. Lerner, A. B., Case, J. D., Biemann, K., Heinzelman, R. V., Szmuszkovicz, J., Anthony, W. C., Krivis, A. Isolation of 5-methoxyindole-3-acetic acid from bovine pineal glands. J. Am. Chem. Soc.81, 5264 (1959).Google Scholar
  28. McIsaac, W. N., Tahorsky, R. J., Farrel, G. 5-Methoxytryptophol: effect on estrus and ovarian weight. Science145, 63–64 (1964).PubMedGoogle Scholar
  29. Mullen, P. E., Leone, R. M., Hooper, J., Smith, I., Silman, R. E., Finnie, M., Carter, S., Linsell, C. Pineal 5-methoxytryptophol in man. Psychoneuroendocrinol.2, 117–126 (1979).Google Scholar
  30. Nagle, C. A., Cardinali, D. P., Rosner, J. M. Light regulation of rat retinal hydroxyindole-O-methyltransferase (HIOMT) activity. Endocrinology91, 423–426 (1972).PubMedGoogle Scholar
  31. Nir, J., Hirschmann, N., Sulman, F. G. The effect of heat on rat pineal hydroxyindole-O-methyltransferase activity. Experientia (Basel)31, 867–868 (1975).Google Scholar
  32. Ozaki, Y., Lynch, H. J. Presence of melatonin in plasma and urine of pinealectomized rats. Endocrinology99, 641–644 (1976).PubMedGoogle Scholar
  33. Pang, S. F., Brown, G. M., Grota, L. J., Chambers, J. W., Rodman, R. L. Determination of N-acetylserotonin and melatonin activities in the pineal gland, retina, Harderian gland, brain and serum of rats and chickens. Neuroendocrinology23, 1–13 (1977).PubMedGoogle Scholar
  34. Pang, S. F., Yew, O. T. Pigment aggregations by melatonin in the retinal pigment epithelium and choroid of guinea-pig,Cavia porcellus. Experientia (Basel)35, 231–232 (1979).Google Scholar
  35. Panke, E. S., Rollag, M. K., Reiter, R. J. Pineal melatonin concentrations in the Syrian hamster. Endocrinology104, 194–197 (1979).PubMedGoogle Scholar
  36. Peat, F., Kinson, G. A. Testicular steroidogenesisin vitro in the rat in response to blinding, pinealectomy, and to the addition of melatonin. Steroids17, 251–253 (1971).PubMedGoogle Scholar
  37. Pelham, R. W., Ralph, C. L., Campbell, I. M. Mass spectral identification of melatonin in blood. Biochem. biophys. Res. Comm.46, 1236–1241 (1972).PubMedGoogle Scholar
  38. Pévet, P., Balemans, M. G. M., Bary, F. A. M., Noordegraaf, E. M. The pineal gland of the mole (Talpa europaea, L.). V. Activity of hydroxy-indole-O-methyltransferase (HIOMT) in the formation of melatonin/ 5-hydroxytryptophol in the eyes and the pineal gland. Ann. Biol. anim. Biochem. Biophys.18, 259–264 (1978).Google Scholar
  39. Quay, W. B. Differential extractions for the spectrophotofluorometric measurement of diverse 5-hydroxy- and 5-methoxyindoles. Anal. Biochem.5, 51–54 (1963).PubMedGoogle Scholar
  40. Quay, W. B. Retinal and pineal hydroxyindole-O-methyltransferase activity in vertebrates. Life Sci.4, 983 (1965).PubMedGoogle Scholar
  41. Quay, W. B. Pineal Chemistry in Cellular and Physiological Mechanisms. Springfield, Ill.: Charles C Thomas. 1974.Google Scholar
  42. Quay, W. B., Ma, Y. H. Demonstration of gastrointestinal hydroxyindole-O-methyltransferase. I. R. C. S. Med. Sci.4, 563 (1976).Google Scholar
  43. Reiter, R. J. Interaction of photoperiod, pineal and seasonal reproduction as exemplified by findings in the hamster. Prog, reprod. Biol.4, 169–190 (1978).Google Scholar
  44. Reiter, R. J., Vaughan, M. K. A study of indoles which inhibit pineal antigonadotrophic activity in male hamsters. Endocrin. Res. Comm.2, 299–308 (1975).Google Scholar
  45. Reiter, R. J., Vaughan, M. K., Vaughan, G. M., Sorrentino, jr., S., Donofrio, R. J. The pineal gland as an organ of internal secretion. In: Frontiers of Pineal Physiology (Altschule, M., ed.), pp. 54–174. Cambridge, Mass.: The MIT Press. 1975.Google Scholar
  46. Rollag, M. D., Panke, E. S., Trakulrungski, W., Trakulrungski, C., Reiter, R. J. Quantification of daily melatonin synthesis in the hamster pineal gland. Endocrinology106, 231–236 (1980).PubMedGoogle Scholar
  47. Sheridan, M. N., Reiter, R. J. Observations in the pineal system in the hamster. II. Fine structure of the deep pineal. J. Morph.131, 163–171 (1970).PubMedGoogle Scholar
  48. Tamarkin, L., Hollister, C. W., Lefebvre, N. G., Goldman, B. D. Melatonin induction of gonadal quiescence in pinealectomized Syrian hamsters. Science198, 953 (1977).PubMedGoogle Scholar
  49. Tamarkin, L., Reppert, S. M., Klein, D. C. Regulation of pineal melatonin in the Syrian hamster. Endocrinology104, 385–389 (1979).PubMedGoogle Scholar
  50. Tamarkin, L., Westrom, W. K., Hamill, A. L., Goldman, B. D. Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin. Endocrinology99, 1534–1538 (1976).PubMedGoogle Scholar
  51. Turek, F. W., Desjardins, C., Menaker, M. Melatonin: antigonadal and progonadal effects in male golden hamsters. Science190, 280 (1975).PubMedGoogle Scholar
  52. Vivien-Rœls, B.: L'épiphyse des Chéloniens. Étude embryologique, structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonine dans des conditions normales et expérimentales. Thèse, Univ. de Strasbourg, 1976.Google Scholar
  53. Vivien-Rœls, B., Arendt, J.: Relative roles of environmental factor, photoperiod and temperature in the control of serotonin and melatonin circadian variations in the pineal organ and plasma of the tortoise,Testudo hermanni, Gmelin. Melatonin Symposium, September 28–30, Bremen, Federal Republic of Germany (1980).Google Scholar
  54. Vivien-Rœls, B., Arendt, J., Bradtke, J. Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) inTestudo bermanni Gmelin (Reptilia, Chelonia). Gen. Comp. Endocrinol.37, 197–210 (1979).PubMedGoogle Scholar
  55. Vlahakes, G. J., Wurtman, R. J. A Mg2-dependent hydroxyindole-O-methyltransferase in rat Harderian gland. Biochem. biophys. Acta261, 194–198 (1972).PubMedGoogle Scholar
  56. Vollrath, L. Comparative morphology of the vertebrate pineal complex. In: The Pineal Gland of Vertebrates Including Man (Ariëns Kappers, J., Pévet, P., eds.), Progress in Brain Research, Vol. 52, pp. 25–38. Amsterdam: Elsevier/North-Holland Biomed. Press. 1979.Google Scholar
  57. Wetterberg, L., Geller, E., Yuwiller, A. Harderian gland: an extraretinal photoreceptor influencing the pineal gland in neonatal rats. Science167, 884–885 (1970).PubMedGoogle Scholar
  58. Wiklund, L. Development of serotonin-containing cells and the sympathetic innervation of the habenular region in the rat brain: a fluorescence histochemical study. Cell Tiss. Res.155, 231–243 (1974).Google Scholar
  59. Wurtman, R. J., Axelrod, J., Potter, L. T. The uptake of H3-melatonin in endocrine and nervous tissues and the effects of constant light exposure. J. Pharmacol. Exp. Ther.143, 314–315 (1964).PubMedGoogle Scholar
  60. Wurtman, R. J., Ozaki, Y. Physiological control of melatonin synthesis and secretion: mechanisms generating rhythms in melatonin, methoxytryptophol, and arginine vasotocin levels and effects on the pineal of endogenous catecholamines, the estrous cycle and environmental lighting. J. Neural Transm. Suppl.13, 59–70 (1978).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. Pévet
    • 1
    • 2
  • M. G. M. Balemans
    • 3
  • W. C. Legerstee
    • 3
  • B. Vivien-Rœls
    • 4
    • 5
  1. 1.The Netherlands Institute for Brain ResearchAmsterdamThe Netherlands
  2. 2.Department of Anatomy and EmbryologyUniversity of AmsterdamThe Netherlands
  3. 3.Zoological Laboratory, Section of Histology and Cell BiologyState University of UtrechtThe Netherlands
  4. 4.Laboratoire de Zoologie et Embryologie ExpérimentaleUniversité Louis PasteurStrasbourgFrance
  5. 5.Laboratoire de Physiologie Comparée des RégulationsCNRSStrasbourgFrance

Personalised recommendations