Advertisement

Journal of Neural Transmission

, Volume 63, Issue 1, pp 13–29 | Cite as

Monoamine distribution on the ventral surface of the rat medulla oblongata

  • Maria Śmiałowska
  • Anna Bal
  • Z. Sołtys
  • J. Kałuza
Original Papers

Summary

The distribution of monoamine transmitters in the area near the ventral surface of the rat medulla oblongata was studied using the Falck-Hillarp histofluorescence method. Histological examination and scanning electron microscopy of these regions were also performed.

It was found that there is a wide area dense with catecholamine terminals in the external layer of the ventral medulla oblongata. 5-Hydroxytryptamine-containing terminals and nerve cell bodies on and near the surface were also found.

Due to their superficial localization these monoamines may influence the content of cerebrospinal fluid and in this way have effects on cardiovascular and other physiological functions.

Keywords

Scanning Electron Microscopy Cerebrospinal Fluid Catecholamine Histological Examination Cell Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björklund, A., Falck, B., Owman, Ch.: Fluorescence microscopic and microspectrofluorimetric techniques for the cellular localization and characterization of biogenic amines. In: The Thyroid and Biogenic Amines (Rall, Kopin, eds.), pp. 318–368. North-Holland. 1972.Google Scholar
  2. Bousquet, P., Guertzenstein, P. G.: Localization of the central cardiovascular action of clonidine. Br. J. Pharmac. Chemother.49, 573–579 (1973).Google Scholar
  3. Chan Palay, V.: Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Res.102, 103–130 (1976).Google Scholar
  4. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta Physiol. Scand.62, Suppl. 232, 1–80 (1964).Google Scholar
  5. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand.64, Suppl. 247, 1–36 (1965).Google Scholar
  6. Falck, B., Hillarp, N. A., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).Google Scholar
  7. Feldberg, W.: The ventral surface of the brain stem: A scarcely explored region of pharmacological sensitivity. Neuroscience1, 427–441 (1976).Google Scholar
  8. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand.64, Supp. 247, 37–85 (1965).Google Scholar
  9. Hillarp, N. A., Fuxe, K., Dahlström, A.: Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol. Rev.18 (I), 727–741 (1966).Google Scholar
  10. Hurle, M. A., Mediavilla, A., Florez, J.: Morphine, pentobarbital and naloxone in the ventral medullary chemosensitive areas: Differential respiratory and cardiovascular effects. J. Pharmacol. Exp. Therap.220, 642–647 (1982).Google Scholar
  11. Le Beux, Y. J.: An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland. II. Nerve endings. Z. Zellforsch.127, 439–461 (1972).Google Scholar
  12. Leger, L., Wiklund, L.: Distribution and numbers of indoleamine cell bodies in the cat brainstem determined withFalck-Hillarp fluorescence histochemistry. Brain Res. Bull.9, 245–251 (1982).Google Scholar
  13. Lorez, H. P., Richards, J. G.: Supra-ependymal serotoninergic nerves in mammalian brain: Morphological, pharmacological and functional studies. Brain Res. Bull.9, 727–741 (1982).Google Scholar
  14. Mitchell, R. A., Loeschcke, H. H., Severinghaus, J. W., Richardson, B. W., Massion, W. H.: Regions of respiratory chemosensitivity on the surface of the medulla. Ann. H.Y. Acad. Sci.109, 661–681 (1963).Google Scholar
  15. Palkovits, M., Jacobowitz, D. M.: Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol.157, 29–42 (1974).Google Scholar
  16. Ribas, J. L.: Morphological evidence for a possible functional role of supraependymal nerves on ependyma. Brain. Res.125, 362–368 (1977).Google Scholar
  17. Schlaefke, M. F., See, W. R., Loeschcke, H. H.: Ventilatory response to alterations of H+-ion concentration in small areas of the ventral medullary surface. Respir. Physiol.10, 198–212 (1970).Google Scholar
  18. Schlaefke, M. E., Kille, J. F., Loeschcke, H. H.: Elimination of central chemosensitivity by coagulation of a bilateral area on the ventral medullary surface in awake cats. Pflügers Arch.379, 231–241 (1979).Google Scholar
  19. Steinbusch, H. W. M.: Distribution of serotonin-immunoreactivity in the central nervous system of the ratcell bodies and terminals. Neuroscience6, 557–618 (1981).Google Scholar
  20. Steinbusch, H. W. M., Nieuwenhuys, R.: The raphe nuclei of the rat brainstem: A cytoarchitectonic and immunohistochemical study. In: Chemical Neuroanatomy (Emson, P., ed.), pp. 131–207. New York: Raven Press. 1983.-Diss.Steinbusch, H. W. M.: Serotoninergic neurons in the central nervous system of the rat. Ed. Nijmegen. 1982.Google Scholar
  21. Takagi, H., Yamamoto, K., Shiosaka, S., Senba, E., Takatsuki, K., Inagaki, S., Sakanaka, M., Tohyama, M.: Morphological study of noradrenaline innervation in the caudal raphe nuclei with special reference to fine structure. J. Comp. Neurol.203, 15–22 (1981).Google Scholar
  22. Torack, R. M., Stranahan, P., Hartman, B. K.: The role of norepinephrine in the function of the area postrema. I. Immunofluorescent localization of dopamine-beta-hydroxylase and electron microscopy. Brain Res.61, 235–252 (1973).Google Scholar
  23. Trouth, C. O., Loeschcke, H. H., Berndt, J.: A superficial substrate on the ventral surface of the medulla oblongata influencing respiration. Pflügers Arch. ges. Physiol.339, 135–152 (1973 a).Google Scholar
  24. Trouth, C. O., Loeschcke, H. H., Berndt, J.: Topography of the respiratory response to electrical stimulation in the medulla oblongata. Pflügers Arch.339, 153–170 (1973 b).Google Scholar
  25. Trough, C. O., Loeschcke, H. H., Berndt, J.: Histological structures in the chemosensitive regions on the ventral surface of the cat's medulla oblongata. Pflügers Arch. ges. Physiol.339, 171–183 (1973 c).Google Scholar
  26. Wiklund, L., Leger, L., Persson, M.: Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J. Comp. Neurol.203, 613–647 (1981).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Maria Śmiałowska
    • 1
  • Anna Bal
    • 1
  • Z. Sołtys
    • 2
  • J. Kałuza
    • 3
  1. 1.Laboratory of Neuropathology, Institute of PharmacologyPolish Academy of SciencesKrakówPoland
  2. 2.Laboratory of Scanning Electron MicroscopyMedical AcademyKrakówPoland
  3. 3.Department of Neuropathology, Medical AcademyInstitute of NeurologyKrakówPoland

Personalised recommendations