Journal of Neural Transmission

, Volume 39, Issue 1–2, pp 33–46 | Cite as

Evidence for involvement of central noradrenergic neurons in the cardiovascular depression induced by morphine in the rat

  • C. Gomes
  • T. H. Svensson
  • G. Trolin


Morphine caused in the anaesthetized rat reduction in brain noradrenaline (NA) turnover, hypotension and bradycardia, similarly to the antihypertensive,α-adrenergic agonist, clonidine. All effects of morphine were antagonized by naloxone, as well as theα-receptor antagonist, yohimbine. In contrast, naloxone did not affect the circulatory depression and reduction in brain NA utilization by clonidine, which both previously have been found to be antagonized by yohimbine. In contrast to clonidine, morphine even in high doses did not facilitate the flexor reflex activity of acutely spinalized rats. Pretreatment with protriptylin largely attenuated the circulatory depressive effects of morphine, as it has previously been found to block the corresponding effects of clonidine. Thus, the morphine-induced cardiovascular depressive effects are primarily elicited by activation of opiate receptors. However, the inhibition of brain NA neurotransmission by morphine appears critically involved in the mediation of the circulatory depression.


Public Health Morphine Noradrenaline Clonidine Naloxone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., Bunney B. S.: Pre- and postsynaptic feedback mechanisms in central dopaminergic neurons. In: Frontiers in Neurology and Neuro-science Research (Seeman, P., Brown, G. M., eds.), pp. 4–11. Toronto: The University of Toronto Press. 1974.Google Scholar
  2. Andén, N.-E., Corrodi, H., Fuxe, K.: Turnover studies using synthesis inhibition. In: Metabolism of amines in the brain (Hooper, G., ed.), pp. 38 to 47. London: Macmillan. 1969.Google Scholar
  3. Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, T.: Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. Europ. J. Pharmacol.2, 59–64 (1967).Google Scholar
  4. Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T. H.: Evidence for a central noradrenaline receptor Stimulation by clonidine. Life Sci.9, 513–523 (1970).Google Scholar
  5. Andén, N.-E., Engel, J., Rubenson, A.: Mode of action of L-Dopa on central noradrenaline mechanisms. Naunyn-Schmiedeberg's Arch. Pharmacol.273, 1–10 (1972).Google Scholar
  6. Andén, N.-E., Grabowska, M.: Synthesis and disappearance of central noradrenaline and dopamine: Regulation via nerve impulses and receptor activity. In: Chemical tools in catecholamine research, part II: Regulation of catecholamine turnover (Almgren, O., Carlsson, A., Engel. J., eds.), pp. 143–149. Amsterdam: North Holland Publishing Comp. 1975.Google Scholar
  7. Andén, N.-E., Grabowska, M., Strömbom, U.: Different alpha-adreno-receptors in the central nervous system mediating biochemical and functional effects of clonidine and receptor blocking agents. Naunyn-Schmiedeberg's Arch. Pharmacol.292, 43–52 (1976).Google Scholar
  8. Andén, N.-E., Jukes, M. G. M., Lundberg, A.: The effect of Dopa on the spinal cord. 2. A pharmacological analysis. Acta physiol. scand.67, 387–397 (1966).Google Scholar
  9. Atack, V., Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid organic solvent mixtures. J. Pharm. Pharmacol.22, 625–627 (1970).Google Scholar
  10. Bertler, Å., Carlsson, A., Rosengren, E.: A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta physiol. scand.44, 273–292 (1958).Google Scholar
  11. Bolme, P., Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., Goldstein, M.: Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interaction with piperoxane and yohimbine. Europ. J. Pharmacol.28, 89–94 (1974).Google Scholar
  12. Braestrup, C.: Effects of phenoxybenzamine, aceperone and clonidine on the level of 3-methoxy-4-hydroxyphenylglycol (MOPEG) in rat brain. J. Pharm. Pharmacol.26, 139–141 (1974).Google Scholar
  13. Carlsson, A.: Receptor mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors (Usdin, E., Bunney, Jr., W. E., eds.), pp. 49 to 65. New York: Marcel Dekker. 1975.Google Scholar
  14. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some anti-depressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Europ. J. Pharmacol.5, 367–373 (1969).Google Scholar
  15. Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., Atack, T. V.: Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev.24, 371–384 (1972).Google Scholar
  16. Evans, A. G. J., Nasmyth, P. A., Stewart, H. L.: The fall of blood pressure caused by intravenous morphine in the rat and the cat. Brit. J. Pharmacol.7, 542–552 (1972).Google Scholar
  17. Gomes, C., Flygt, C., Henning, M., Norin, L., Svensson, T. H., Trolin, G.: Gammahydroxybutyric acid: Cardiovascular effects in the rat. J. Neural Transmission. In press (1976 b).Google Scholar
  18. Gomes, C., Svensson, T. H., Trolin, G.: Effects of morphine on central catecholamine turnover, blood pressure and heart rate in the rat. Naunyn-Schmiedeberg's Arch. Pharmacol. In press (1976 a).Google Scholar
  19. Grabowska, M., Andén, N.-E.: Noradrenaline synthesis and utilization. Control by nerve impulse flow under normal conditions and after treatment with alpha-adrenoreceptor blocking agents. Naunyn-Schmiedeberg's Arch. Pharmacol.292, 53–58 (1976).Google Scholar
  20. Haigler, H., Aghajanian, G. K.: Lysergic acid diethylamide and serotonin: A comparison of effects on serotonergic neurons and neurons receiving a serotonergic input. J. Pharmacol. exp. Ther.188, 688–699 (1974).Google Scholar
  21. Henning, M.: Studies on the mode of action ofα-methyldopa. Acta physiol. scand. Suppl. 322 (1969).Google Scholar
  22. Kayaalp, S. O., Kaymakcalan, S.: A comparative study of the effects of morphine in unaesthetized and anesthetized cats. Brit. J. Pharmacol.26, 196–204 (1966).Google Scholar
  23. Kobinger, W., Walland, A.: Facilitation of vagal reflex bradycardia by an action of clonidine on centralα-receptors. European J. Pharmacol.19, 210–217 (1972).Google Scholar
  24. Korf, J., Bunney, B. S., Aghajanian, G. K.: Noradrenergic neurons; Morphine inhibition of spontaneous activity. European J. Pharmacol.25, 165–169 (1974).Google Scholar
  25. Kuhar, M. J., Pert, C. P., Snyder, S.: Regional distribution of opiate receptor binding in monkey and human brain, Part 2. Nature245, 447–450 (1973).Google Scholar
  26. Laubie, M., Schmitt, H., Cavellos, J., Roquebert, J., Demichelle, P.: Centrally mediated bradycardia and hypotension induced by narcotic analgesia: Dextromoramide and fentanyl. European J. Pharmacol.28, 66–75 (1974).Google Scholar
  27. Mansour, E., Capone, R., Mason, D. T.: The mechanism of morphine-induced peripheral arteriolar dilation—central nervous sympatholysis. Am. J. Card.26, 648 (1970).Google Scholar
  28. Marmo, E., Di Nola, R., Vacco, C., Saini, R., Coscia, L., Cazzola, M., Brita, G.: Experimental analysis of some interferences between PGT2 and morphine. In: Abstracts. Sixth International Congress of Pharmacology, Helsinki, p. 291. Helsinki: Sanomaprint. 1975.Google Scholar
  29. Montel, H., Starke, K., Taube, H. D.: Morphine tolerance and dependence in noradrenaline neurons of the rat cerebral cortex. Naunyn-Schmiedeberg's Arch. Pharmacol.288, 415–426 (1975 a).Google Scholar
  30. Montel, H., Starke, K., Taube, H. D.: Influence of morphine and naloxone on the release of noradrenaline from rat cerebellar cortex slices. Naunyn-Schmiedeberg's Arch. Pharmacol.388, 427–433 (1975 b).Google Scholar
  31. Nybäck, H., Walters, J. R., Aghajanian, G. K., Roth, R. H.: Tricyclic anti-depressants: Effect on the firing rate of brain noradrenergic neurons. Europ. J. Pharmacol.32, 302–312 (1975).Google Scholar
  32. Rochette, L., Bralet, A. M., Bralet, J.: Influence de la clonidine et la libération de la noradrénaline dans différentes structures cérébrales du rat. J. Pharmacol. (Paris)5, 209–220 (1974).Google Scholar
  33. Schmitt, H., Schmitt, H.: Interactions between 2-(2, 6-dichlorophenylamino)-2-imidazoline hydrochloride (ST 155, Catapresan®) andα-adrenergic blocking drugs. Europ. J. Pharmacol.9, 7–13 (1970).Google Scholar
  34. Schmitt, H., Schmitt, H., Fénard, S.: Evidence for aα-sympathomimetic component in the effects of catapresan on vasomotor centres: antagonism by piperoxane. Europ. J. Pharmacol.14, 98–100 (1971).Google Scholar
  35. Schmitt, H., Schmitt, H., Fénard, S.: Action ofα-adrenergic blocking drugs on the sympathetic centres and their interactions with the central sympatho-inhibitory effect of clonidine. Arzneimittel-Forschung23, 40–45 (1973).Google Scholar
  36. Starke, K., Borowski, E., Endo, T.: Preferential blockade of presynapticα-adrenoreceptors by yohimbine. Europ. J. Pharmacol.34, 385–388 (1976).Google Scholar
  37. Starke, K., Montel, H.: Involvement ofα-receptors in clonidine-induced inhibition of transmitter release from central monoamine neurones. Neuropharmacology12, 1073–1080 (1973).Google Scholar
  38. Svensson, T. H., Bunney, B. S., Aghajanian, G. K.: Inhibition of both noradrenergic and serotonergic neurons in brain by theα-adrenergic agonist clonidine. Brain Research92, 291–306 (1975).Google Scholar
  39. Svensson, T. H., Trolin, G.: Brain noradrenaline neurons: drugs affecting impulse flow, transmitter turnover and blood pressure. In: Chemical tools in catecholamine research, part II: Regulation of catecholamine turnover (Almgren, O., Carlsson, A., Engel, J., eds.), pp. 119–125. Amsterdam: North Holland Publishing Comp. 1975.Google Scholar
  40. Trolin, G.: Involvement ofα-adrenergic receptors at different levels of the central nervous system in the regulation of blood pressure and heart rate. Acta physiol. scand. Suppl. 430 (1975).Google Scholar
  41. Van Spanning, H. W., Van Zwieten, P. A.: The interference of tricyclic antidepressants with the central hypotensive effect of clonidine. Europ. J. Pharmacol.24, 402–404 (1973).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • C. Gomes
    • 1
    • 2
  • T. H. Svensson
    • 1
  • G. Trolin
    • 1
  1. 1.Department of PharmacologyUniversity of GöteborgSweden
  2. 2.Dept. of Biochemistry and PharmacologyEscola Paulista de MedicinaS. PauloBrasil

Personalised recommendations