Microchimica Acta

, Volume 121, Issue 1–4, pp 237–247 | Cite as

Fibre optic fluorometric enzyme sensors for hydrogen peroxide and lactate, based on horseradish peroxidase and lactate oxidase

  • Florian Schubert
  • Fang Wang
  • Herbert Rinneberg
Original Papers


An optical biosensor for the determination of hydrogen peroxide based on immobilized horseradish peroxidase is described. The fluorescence of the dimeric product of the enzyme catalysed oxidation of homovanillic acid is utilized to determine the concentration of H2O2. The membrane-bound enzyme is attached to a bifurcated fibre bundle permitting excitation and detection of the fluorescence by a fluorometer. The response of the sensor is linear from 1 to 130 μM hydrogen peroxide; the coefficient of variation is 3%. The sensor is stable for more than 10 weeks. The operating pH for maximal sensor response is 8.15. This allows the sensor to be used in combination with oxidase reactions producing hydrogen peroxide, as is demonstrated with a co-immobilized lactate oxidase-horseradish peroxidase optode for the determination of L-lactate. The fluorescence intensity of this sensor depends linearly on the concentration of lactate between 3 and 200 μM and a throughput of 10 samples per hour is possible. The precision is in the same range as that of the monoenzyme optode. The lifetime of the bienzyme sensor for lactate is considerably shorter than that of the peroxidase sensor; it is limited by the stability of the immobilized lactate oxidase enzyme. The sensor has been applied to the determination of lactate in control serum.

Key words

optical biosensor enzyme optode hydrogen peroxide horseradish peroxidase lactate determination lactate oxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. S. Wolfbeis (ed.),Fiber Optic Chemical Sensors and Biosensors, CRC, Boca Raton, Florida, 1991.Google Scholar
  2. [2]
    M. J. Goldfinch, C. R. Lowe,Anal. Biochem. 1984,138, 430.PubMedGoogle Scholar
  3. [3]
    W. Trettnak, M. J. Leiner, O. S. Wolfbeis,Biosensors 1988,4, 15.Google Scholar
  4. [4]
    B. P. H. Schaffar, O. S. Wolfbeis,Biosens. Bioelectron. 1990,5, 137.PubMedGoogle Scholar
  5. [5]
    W. Trettnak, O. S. Wolfbeis,Anal. Biochem. 1990,184, 124.PubMedGoogle Scholar
  6. [6]
    B. A. A. Dremel, S. Y. Li, R. D. Schmid,Biosens. Bioelectron. 1992,7, 133.PubMedGoogle Scholar
  7. [7]
    W. Trettnak, O. S. Wolfbeis,Fresenius Z. Anal. Chem. 1989,334, 427.Google Scholar
  8. [8]
    W. Trettnak, O. S. Wolfbeis,Anal. Chim. Acta 1989,221, 195.Google Scholar
  9. [9]
    D. B. Papkovsky,Sens. Actuators. B. 1993,11, 293.Google Scholar
  10. [10]
    B. A. Petersson, in:Biosensors International Workshop 1987, GBF Monographs, Vol. 10 (R. D. Schmid, ed.), VCH, Weinheim, 1987, p. 325.Google Scholar
  11. [11]
    X. Xie, A. A. Suleiman, G. G. Guilbault, Z. Yang, Z. Sun,Anal. Chim. Acta 1992,266, 325.Google Scholar
  12. [12]
    A. A. Suleiman, R. L. Villarta, G. G. Guilbault,Anal. Lett. 1993,26, 1493.Google Scholar
  13. [13]
    T. M. Freeman, W. R. Seitz,Anal. Chem. 1978,50, 1242.Google Scholar
  14. [14]
    M. Aizawa, Y. Ikariyama, H. Kuno,Anal. Lett. 1984,17, 555.Google Scholar
  15. [15]
    M. Demura, T. Asakura, E. Nakamura, H. Tamura,J. Biotechnol. 1989,10, 113.Google Scholar
  16. [16]
    L. J. Blum, J. M. Plaza, P. R. Coulet,Anal. Lett. 1987,20, 317.Google Scholar
  17. [17]
    L. J. Blum, S. M. Gautier, P. R. Coulet,Anal. Lett. 1988,21, 717.Google Scholar
  18. [18]
    J. Hlavay, G. G. Guilbault,Acta Chim. Hung. 1993,130, 83.Google Scholar
  19. [19]
    G. Blankenstein, F. Preuschoff, U. Spohn, K. H. Mohr, M. R. Kula,Anal. Chim. Acta 1993,271, 231.Google Scholar
  20. [20]
    E. H. Hansen, L. Norgaard, M. Pedersen,Talanta 1991,38, 275.Google Scholar
  21. [21]
    L. J. Blum,Enzyme Microb. Technol. 1993,15, 407.Google Scholar
  22. [22]
    G. G. Guilbault, P. Brignac, M. Zimmer,Anal. Chem. 1968,40, 190.PubMedGoogle Scholar
  23. [23]
    G. G. Guilbault, P. J. Brignac, M. Juneau,Anal. Chem. 1968,40, 1256.PubMedGoogle Scholar
  24. [24]
    Y. X. Ci, F. Wang,Anal. Chim. Acta 1990,233, 299.Google Scholar
  25. [25]
    F. Wang, F. Schubert, H. Rinneberg,Sens. Actuators 1995,28, 3.Google Scholar
  26. [26]
    Y. -X. Ci, F. Wang,Fresenius J. Anal. Chem. 1991,339, 46.Google Scholar
  27. [27]
    T. Tsuchida, H. Takasugi, K. Yoda, K. Takizawa, S. Kobayashi,Biotechnol. Bioeng. 1985,27, 837.Google Scholar
  28. [28]
    D. L. Wang, A. Heller,Anal. Chem. 1993,65, 1069.PubMedGoogle Scholar
  29. [29]
    G. Bardeletti, F. Sechaud, P. R. Coulet,Anal. Chim. Acta 1986,187, 47.Google Scholar
  30. [30]
    W. Strassner,Laborwerte und ihre klinische Bedeutung, 4th Ed., Volk und Gesundheit, Berlin, 1981, p. 176.Google Scholar
  31. [31]
    D. A. Scott, A. W. Skillen,Anal. Chim Acta 1992,256, 47.Google Scholar
  32. [32]
    F. Sechaud, S. Peguin, P. R. Coulet, G. Bardeletti,Process Biochem. 1989,February, 33.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Florian Schubert
    • 1
  • Fang Wang
    • 1
  • Herbert Rinneberg
    • 1
  1. 1.Group Medical Measuring TechnologyPhysikalisch-Technische BundesanstaltBerlinFederal Republic of Germany

Personalised recommendations