, Volume 68, Issue 1–2, pp 107–133 | Cite as

“Transfer cells” Plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—Their occurrence, structure, and development

  • B. E. S. Gunning
  • J. S. Pate


Plant cells possessing ingrowths of wall material, and hence having protoplasts with unusually high surface-to-volume ratios, may be found in a wide variety of anatomical situations and in most of the major taxa of multicellular plants. They are termed here “transfer cells”. Their function relates to any of four categories of trans membrane flux: 1. Absorption of solutes from the external environment (e.g. epidermis of submerged leaves), 2. Secretion of solutes to the external environment (e.g. nectaries and other glands), 3. Absorption of solutes from an internal, extracytoplasmic compartment (e.g. vascular parenchyma, haustorial-type connections, embryo sacs and embryos), 4. Secretion of solutes into an internal extracytoplasmic compartment (e.g. tapetum of anther, pericycle of root nodule). An overall assessment of their occurrence, structure, development and role in the plant is presented taking account of published information and new observations.

The wall ingrowths form just as intensive transport starts; they become best developed on those faces of the cell presumed to be most active in solute transport and their form, frequency and final degree of development are within limits characteristic of the plant species and of the location of its transfer cells. Numerous mitochondria and a conspicuous endoplasmic reticulum usually accompany this wall specialization, and the relevance of these features to the exchange of solutes across the plasma membrane is discussed.

Transfer cells are apparently restricted to situations where adverse surface area—volume relationships exist between donor and receptor compartments of the transport pathway and/or where the transported solutes are accompanied by a minimal flow of solvent. This suggests that selection pressures of a physiological nature may have shaped evolution of the transfer cell, its wall-membrane apparatus emerging as a module which may serve in any of several forms of intensive, short distance transport.


Transfer Cell Minimal Flow Receptor Compartment Major Taxon Volume Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachofen, R., undH. Wanner, 1962: Transport und Verteilung von markierten Assimilaten. Planta (Berl.)58, 225–236.Google Scholar
  2. Belcher, J. H., 1968: The fine structure ofFurcilla stigmatophora (Skuja) Korshikov. Ark. Mikrobiol.60, 84–94.Google Scholar
  3. Biddulph, O., andR. Cory, 1965: Translocation of14C metabolites in the phloem of the bean plant. Plant Physiol.40, 119–135.Google Scholar
  4. Briarty, L. G., 1967: Cytological and biochemical changes in the maturing and germinating seeds ofVicia faba L. University of Liverpool: Thesis.Google Scholar
  5. Brown, R. M., Jr., andR. Wilson, 1968: Electron microscopy of the lichenPhyscia aipolia (Ehrh.) Nyl. J. Phycol.4, 230–240.Google Scholar
  6. Carlquist, S., 1956: On the occurrence of intercellular pectic warts inCompositae. Amer. J. Bot.43, 425–429.Google Scholar
  7. Clutter, M. E., andI. M. Sussex, 1968: Ultrastructural development of bean embryo cells containing polytene chromosomes. J. Cell Biol.39, 26 a.Google Scholar
  8. Diboll, A. G., 1968 a: Histochemistry and fine structure of the pollen tube residue in the megagametophyte ofZea mays. Caryologia21, 91–95.Google Scholar
  9. —, 1968 b: Fine structural development of the megagametophyte ofZea mays following fertilisation. Amer. J. Bot.55, 787–806.Google Scholar
  10. —, andD. A. Larson, 1966: An electron microscopic study of the mature megagametophyte inZea mays. Amer. J. Bot.53, 391–402.Google Scholar
  11. Dörr, I., 1967: Zum Feinbau der „Hyphen“ vonCuscuta odorata und ihrem Anschlu\ an die Siebröhren ihrer Wirtspflanzen. Naturwissenschaften54, 474–475.Google Scholar
  12. —, 1968 a: Zur Lokalisierung von Zellkontakten zwischenCuscuta odorata und verschiedenen höheren Wirtspflanzen. Protoplasma65, 435–448.Google Scholar
  13. —, 1968 b: Feinbau der Kontakte zwischenCuscuta-Hyphen und den Siebröhren ihrer Wirtspflanzen. Vortr. Ges. Geb. Bot. N. F.2, 24–26. Stuttgart: Gustav Fischer.Google Scholar
  14. Dycus, A. M., andL. Knudson, 1957: The role of the velamen of the aerial roots of orchids. Bot. Gaz.119, 78–87.Google Scholar
  15. Eymé, J., etC. Suire, 1967: Au sujet de l'infrastructure des cellules de la région placentaire deMnium cuspidatum Hedw. (Mousse Bryale acrocarpe). C. R. Acad. Sci. (Paris)265, 1788–1791.Google Scholar
  16. Falk, H., undP. Sitte, 1963: Zellfeinbau bei Plasmolyse. 1. Der Feinbau derElodea-Blattzellen. Protoplasma57, 290–303.Google Scholar
  17. Figier, J., 1968: Localisation infrastructurale de la phosphomonoestérase acide dans la stipule deVicia faba L. au niveau du nectaire. Planta (Berl.)83, 60–79.Google Scholar
  18. Goebel, K., 1922: Erdwurzeln mit Velamen. Flora (Jena)115, 1–26.Google Scholar
  19. Govier, R. N., J. G. S. Brown, andJ. S. Pate, 1968: Hemiparasitic nutrition in Angiosperms II. Root haustoria and leaf glands ofOdontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytol.67, 963–972.Google Scholar
  20. Gunning, B. E. S., J. S. Pate, andL. G. Briarty, 1968: Specialised “Transfer Cells” in minor veins of leaves and their possible significance in phloem translocation. J. Cell Biol.37, C7–12.Google Scholar
  21. — — —, 1969: Cells with wall ingrowths (Trasfer Cells) in the placenta of ferns. Planta (Berl.)87, 271–274.Google Scholar
  22. Guttenberg, H. v., 1968: Der primÄre Bau der Angiospermenwurzel. Encyclopedia of Plant Anatomy8 (5), 1–472. Berlin: Borntraeger.Google Scholar
  23. Haberlandt, G., 1914: Physiological plant anatomy. 4th Ed. (trans.). London: Macmillan and Co.Google Scholar
  24. Israel, H. W., andY. Sagawa, 1964: Post-pollination ovule development inDendrobium orchids II. Fine structure of the nucellar and archesporial phases. Caryologia17, 301–316.Google Scholar
  25. Jacob, F., undS. Neumann, 1968: Studien anCuscuta reflexa Roxb. I. Zur Funktion der Haustorien bei der Aufnahme von Saccharose. Flora (Jena)159, 191–203.Google Scholar
  26. Jensen, W. A., 1963: Cell development during plant embryogenesis. Brookhaven Symp. in Biol.16, 179–202.Google Scholar
  27. —, 1965: The ultrastructure and histochemistry of the synergids of cotton. Amer. J. Bot.52, 238–256.Google Scholar
  28. Kelley, C., 1969: Wall projections in the sporophyte and gametophyte ofSphaerocarpos. J. Cell Biol.41, 910–914.Google Scholar
  29. Kiesselbach, T. A., 1949: The structure and reproduction of corn. Agr. Exp. Sta. Univ. Nebraska Coll. Agr. Res. Bull.161, 1–96.Google Scholar
  30. Küster, E., 1956: Die Pflanzenzelle. 3. Aufl. Jena: Gustav Fischer.Google Scholar
  31. Ledbetter, M. C., andK. R. Porter, 1963: A “microtubule” in plant cell fine structure. J. Cell Biol.19, 239–250.Google Scholar
  32. Leitgeb, H., 1864: /:Uber kugelförmige Zellverdickungen in der Wurzelhülle einiger Orchideen. S.B. Akad. Wiss. Wien, math.-nat. Klasse, Bd.49, 1.Google Scholar
  33. Lüttge, U., 1966: Funktion und Struktur pflanzlicher Drüsen. Naturwissenschaften53, 96–103.Google Scholar
  34. Maier, K., 1967: Wandlabyrinthe im Sporophyten vonPolytrichum. Planta (Berl.)77, 108–126.Google Scholar
  35. Marquardt, H., O. M. Barth undU. von Rahden, 1968: Zytophotometrische und elektronenmikroskopische Beobachtungen über die Tapetumzellen in den Antheren vonPaeonia tenuifolia. Protoplasma65, 407–421.Google Scholar
  36. Mayr, F., 1915: Hydropoten an Wasser- und Sumpfpflanzen. Beih. bot. Zbl.32, 278–371.Google Scholar
  37. Meinecke, E. P., 1894: BeitrÄge zur Anatomie der Luftwurzeln der Orchideen. Flora (Jena)78, 133–203.Google Scholar
  38. Pate, J. S., 1968: Physiological aspects of inorganic and intermediate nitrogen metabolism. Symp. Long Ashton, Bristol, p. 219–240. London: Academic Press.Google Scholar
  39. —, andB. E. S. Gunning, 1969: Vascular transfer cells in Angiosperm leaves — a taxonomic and morphological survey. Protoplasma68, 135–156.Google Scholar
  40. — —, andL. G. Briarty, 1969: Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta (Berl.)85, 11–34.Google Scholar
  41. —, andT. P. O'Brien, 1968: Microautoradiographic study of the incorporation of labelled amino acids into insoluble compounds of the shoot of a higher plant. Planta (Berl.)78, 60–71.Google Scholar
  42. Peel, A. J., 1962: The movement of ions from the xylem solution into the sieve tubes of willow. J. exp. Bot.14, 438–447.Google Scholar
  43. —, 1967: Demonstration of solute movement from the extra-cambial tissues into the xylem stream in willow. J. exp. Bot.18, 600–606.Google Scholar
  44. Peveling, E., 1968: OberflÄchenvergrö\erung des Plasmalemmas in symbiotisch lebenden Pilzen. Naturwissenschaften55, 451–452.Google Scholar
  45. Pickett-Heaps, J. D., 1966: Ultrastructure and differentiation inChara sp. I. Vegetative cells. Aust. J. biol. Sci.20, 539–551.Google Scholar
  46. —, 1967 a: The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplasmic microtubules. Devl. Biol.15, 206–236.Google Scholar
  47. —, 1967 b: Ultrastructure and differentiation inChara sp. III. Formation of the antheridium. Aust. J. biol. Sci.21, 255–274.Google Scholar
  48. Preston, R. D., andR. N. Goodman, 1968: Structural aspects of cellulose microfibril biosynthesis. J. R. microsc. Soc.88, 513–528.Google Scholar
  49. Renaudin, S., 1966: Sur les glandes deLathraea clandestina L. Bull. Soc. Bot. Fr.113, 379–385.Google Scholar
  50. Revel, J. P., andM. J. Karnovsky, 1967: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol.33, C7–12.Google Scholar
  51. Roth, T. F., andK. R. Porter, 1964: Yolk protein uptake in the oocyte of the mosquitoAedes aegypti L. J. Cell Biol.20, 313–332.Google Scholar
  52. Scala, J., D. Schwab, andE. Simmons, 1968: The fine structure of the digestive gland of Venus' flytrap. Amer. J. Bot.55, 649–657.Google Scholar
  53. Schnepf, E., 1960: Zur Feinstruktur der Drüsen vonDrosophyllum lusitanicum. Planta (Berl.)54, 641–674.Google Scholar
  54. —, 1961: Licht- und elektronenmikroskopische Beobachtungen an Insektivoren-Drüsen über die Sekretion des Fangschleimes. Flora (Jena)151, 73–87.Google Scholar
  55. —, 1964 a: Licht- und elektronenmikroskopische Untersuchungen an Septalnektarien. Protoplasma58, 137–171.Google Scholar
  56. —, 1964 b: über Zellwandstrukturen bei den Köpfchendrüsen der SchuppenblÄtter vonLathraea clandestina L. Planta (Berl.)60, 473–482.Google Scholar
  57. —, 1965 a: Physiologie und Morphologie sekretorischer Pflanzenzellen. In: Sekretion und Exkretion. Funktionelle und Morphologische Organisation der Zelle2, 72–88. Berlin-Heidelberg-New York: Springer-Verlag.Google Scholar
  58. —, 1965 b: Die Morphologie der Sekretion in pflanzlichen Drüsen. Ber. dtsch. bot. Ges.78, 478–483.Google Scholar
  59. Schulz, R., andW. A. Jensen, 1968 a:Capsella embryogenesis: the synergids before and after fertilization. Amer. J. Bot.55, 541–552.Google Scholar
  60. — —, 1968 b:Capsella embryogenesis: the egg, zygote, and young embryo. Amer. J. Bot.55, 807–819.Google Scholar
  61. Shimony, C., andA. Fahn, 1968: Light- and electron-microscopical studies on the structure of salt glands ofTamarix aphylla L. J. Linn. Soc. (Bot.)60, 283–287.Google Scholar
  62. Sitte, P., 1963: Zellfeinbau bei Plasmolyse II. Der Feinbau der Elodea-Blattzellen bei Zucker- und Ionenplasmolyse. Protoplasma57, 304–333.Google Scholar
  63. Steward, F. C., andJ. F. Sutcliffe, 1959: Plants in relation to inorganic solutes. Pp. 253–478 in Plant Physiology Vol. II. Ed.F. C. Steward. New York: Academic Press.Google Scholar
  64. Thompson, W. W., andL. Liu, 1967: Ultrastructural features of the salt gland ofTamarix aphylla L. Planta (Berl.)73, 201–220.Google Scholar
  65. Underbrink, A. G., undL. V. Olah, 1968: Effect of digitonin on cellular division. Part III. Fine structural aspects of early phragmoplast development in the absence of an organized mitotic spindle. Cytologia33, 155–164.Google Scholar
  66. Uphof, J. C. Th., andK. Hummel, 1962: Plant hairs. Encyclopedia of plant anatomy4 (5), 1–292. Berlin: Borntraeger.Google Scholar
  67. Van der Pluijm, J. E., 1964: An electron microscopic investigation of the filiform apparatus in the embryo sac ofTorenia fournieri. P. 6–16. In: Pollen physiology and fertilization. Amsterdam: North-Holland Publishing Co.Google Scholar
  68. Van Went, J., undH. F. Linskens, 1967: Die Entwicklung des sogenannten „Fadenapparates“ im Embryosack vonPetunia hybrida. Genet. Breeding Res.37, 51–56.Google Scholar
  69. Vazart, J., 1968: Infrastructure de l'ovule du lin,Linum usitatissimum L. Le complexe antipodial. C. R. Acad. Sci. (Paris)266, 211–213.Google Scholar
  70. Vazart, B., andJ. Vazart, 1966: Infrastructure du sac embryonnaire du lin (Linum usitatissimum L.). Rev. Cytol. Biol. Végétales24, 251–266.Google Scholar
  71. Vögel, A., 1960: Zur Feinstruktur der Drüsen vonPinguicula. Beih. Z. schweiz. Forstverw.30, 113–122.Google Scholar
  72. Wark, M. C., 1965: Fine structure of the phloem ofPisum sativum II. The companion cell and phloem parenchyma. Aust. J. biol. Sci.13, 185–194.Google Scholar
  73. Weigl, J., undU. Lüttge, 1965: Die Ionenaufnahme durch die Luftwurzel vonEpidendrum. Protoplasma60, 1–6.Google Scholar
  74. Wooding, F. B. P., 1969: Absorptive cells in protoxylem: association between mitochondria and the plasmalemma. Planta (Berl.)84, 235–238.Google Scholar
  75. —, andD. H. Northcote, 1965: An anomalous wall thickening and its possible role in the uptake of stem-fed tritiated glucose byPinus pinea. J. Ultrastruct. Res.12, 463–472.Google Scholar
  76. Wrischer, M., 1962: Elektronenmikroskopische Beobachtungen an extrafloralen Nektarien vonVicia faba L. Acta. Botanica Croatica21, 75–94.Google Scholar
  77. Ziegler, H., 1965: Die Physiologie pflanzlicher Drüsen. Ber. dtsch. bot. Ges.78, 466–477.Google Scholar
  78. —, undU. Lüttge, 1966: Die Salzdrüsen vonLimonium vulgare. I. Die Feinstruktur. Planta (Berl.)70, 193–206.Google Scholar
  79. — —, 1967: Die Salzdrüsen vonLimonium vulgare. II. Mitteilung über die Lokalisierung des Chlorids. Planta (Berl.)74, 1–17.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • B. E. S. Gunning
    • 1
  • J. S. Pate
    • 1
  1. 1.Department of BotanyQueen's UniversityBelfastNorthern Ireland

Personalised recommendations