Journal of Neural Transmission

, Volume 47, Issue 4, pp 299–306 | Cite as

Plasma tyrosine in normal humans: Effects of oral tyrosine and protein-containing meals

  • E. Melamed
  • B. Glaeser
  • J. H. Growdon
  • R. J. Wurtman
Article

Summary

To test the effects of tyrosine ingestion and concurrent food consumption on plasma tyrosine levels and on the plasma tyrosine ratio, we measured plasma neutral amino acid levels in 11 subjects who consumed a diet containing 113 g protein and who also took 100 mg/kg/day of L-tyrosine (in three equally divided doses) before meals. Plasma tyrosine levels rose significantly (p<0.025) during the day when subjects consumed the diet alone; they increased markedly after tyrosine ingestion (p<0.005). Tyrosine administration did not affect plasma concentrations of the other neutral amino acids that compete with tyrosine for entry into the brain. Thus, the plasma tyrosine ratio increased from 0.13 to 0.21 (p<0.001) on the day fed subjects received the tyrosine. These observations indicate that tyrosine administration might increase brain tyrosine levels and perhaps accelerate catecholamine synthesis in humans with diseases in which catecholamine synthesis or release is deficient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloxam, D. L., Warren, W. H. Error in the determination of tryptophan by the method of Denckla and Dewey. Anal. Biochem.60, 621–625 (1974).Google Scholar
  2. Delean, J., Richardson, J. C., Hornykiewicz, O. Beneficial effects of serotonin precursors on postanoxic action myoclonus. Neurology26, 863–868 (1976).Google Scholar
  3. Denckla, W. D., Dewey, H. K. Determination of tryptophan in plasma, liver and urine. J. Lab. Clin. Med.69, 160–169 (1967).Google Scholar
  4. Fernstrom, J. D., Faller, D. V. Neutral amino acids in the brain: changes in response to food ingestion. J. Neurochem.30, 1531–1538 (1978).Google Scholar
  5. Fernstrom, J. D., Larin, F., Wurtman, R. J. Correlations between brain tryptophan and plasma neutral amino acid levels following food consumption in rats. Life Sci.13, 517–524 (1973).Google Scholar
  6. Fernstrom, J. D., Wurtman, R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science173, 149–152 (1971 a).Google Scholar
  7. Fernstrom, J. D., Wurtman, R. J. Brain serotonin content: increase following ingestion of carbohydrate diet. Science174, 1023–1025 (1971 b).Google Scholar
  8. Fernstrom, J. D., Wurtman, R. J., Hammarstrom-Wiklund, B., Rand, W. M., Munro, H. N., Davidson, C. S. Diurnal variations in plasma concentrations of tryptophan, tyrosine and other neutral amino acids: effect of dietary protein intake. Am. J. Clin. Nutr.32, 1912–1922 (1979).Google Scholar
  9. Gibson, C. J., Wurtman, R. J. Physiological control of brain catechol synthesis by brain tyrosine concentration. Biochem. Pharmacol.26, 1137–1142 (1977).Google Scholar
  10. Gibson, C. J., Wurtman, R. J. Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci.22, 1399–1406 (1978).Google Scholar
  11. Glaeser, B. S., Melamed, E., Growdon, J. H., Wurtman, R. J. Elevation of plasma tyrosine levels after a single load of L-tyrosine. Life Sci.25, 265–272 (1979).Google Scholar
  12. Hartmann, E. L-tryptophan: effects on sleep. Monogr. Neural Sci.3, 26 to 32 (1976).Google Scholar
  13. Lehman, J. Light—a source of error in the fluorimetric determination of tryptophan. Scand. J. Lab. Invest.28, 49–55 (1971).Google Scholar
  14. Maas, J. W. Biogenic amines and depression—biochemical and pharmacological separation of two types of depression. Arch. Gen. Psychiatry32, 1357–1361 (1975).Google Scholar
  15. Mendels, J., Stinnett, J. L., Burns, D., Frazer, A. Amine precursors and depression. Arch. Gen. Psychiatry32, 22–30 (1975).Google Scholar
  16. Scally, M. C., Ulus, I., Wurtman, R. J. Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J. Neural Transm.41, 1–6 (1977).Google Scholar
  17. Waalkes, T. P., Udenfriend, S. A fluorimetric method for estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med.50, 733–736 (1957).Google Scholar
  18. Wurtman, R. J. Diurnal rhythms in mammalian protein metabolism. In: Mammalian Protein Metabolism (Munro, H. N., ed.), Vol. 4, pp. 445 to 479, New York: Academic Press. 1970.Google Scholar
  19. Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D. Brain catechol synthesis: control by brain tyrosine concentration. Science185, 183 to 184 (1974).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • E. Melamed
    • 1
    • 2
  • B. Glaeser
    • 1
    • 2
  • J. H. Growdon
    • 1
    • 2
  • R. J. Wurtman
    • 1
    • 2
  1. 1.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridge
  2. 2.Department of NeurologyTufts University Medical SchoolBostonUSA

Personalised recommendations