International Journal of Legal Medicine

, Volume 107, Issue 1, pp 34–36 | Cite as

Swiss population data on three tetrameric short tandem repeat loci — VWA, HUMTH01, and F13A1 —derived using multiplex PCR and laser fluorescence detection

  • M. N. Hochmeister
  • J. M. Jung
  • B. Budowle
  • U. V. Borer
  • R. Dirnhofer
Original Article


Allele and genotype frequencies for 3 tetrameric short tandem repeat loci VWA, HUMTHO1, and F13A1 were determined in a Swiss population sample using multiplex PCR and subsequent electrophoresis in DNA sequencing gels processed by automated laser fluorescence detection. The technique allows single base pair resolution and rapid typing, with a concomitant reduction in the potential for human transcriptional typing errors. All loci meet Hardy-Weinberg expectations. In addition, there is little evidence for association of alleles among the 3 loci. The allelic frequency data can be used in forensic analyses and paternity tests to estimate the frequency of a multiple STR locus DNA profile in the Swiss population.

Key words

PCR Multiplex VWA HUMTHO1 F13A1 Fluorescence detection Hardy-Weinberg expectations Short tandem repeat loci 


An einer Schweizer Populationsstichprobe wurden mittels Multiplex-PCR und automatisierter Fluoreszenzdetektion (Applied Biosystem 373A DNA Sequencer) die Allel- und Genotypfrequenzen der Short tandem repeat (STR) loci VWA, HUMTHO1 und F13A1 bestimmt. Die Daten wurden umfangreichen statistischen Analysen unterzogen. Alle Loci erfüllen die Hardy-Weinberg-Kriterien. Die ermittelten Daten erlauben die Abschätzung der Häufigkeit des Vorkommens eines Multiplex-STR-Profils in der Schweizer Bevölkerung zur Anwendung in forensischen DNA-Analysen und Vaterschaftsuntersuchungen.


PCR Multiplex2 VWA HUMTHO1 F13A1 Fluoreszenzdetektion Hardy-Weinberg-Gleichgewicht Short tandem repeat loci 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536Google Scholar
  2. Chakraborty R, Smouse PE, Neel JV (1988) Population amalgamation and genetic variation: observations on artificially agglomerated tribal populations of Central and South America. Am J Hum Genet 43: 709–725Google Scholar
  3. Chakraborty R, Fornage M, Guegue R, Boerwinkle E (1991) Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA Fingerprinting: approaches and applications. Birkhäuser, Berlin, pp 127–143Google Scholar
  4. Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49: 746–756Google Scholar
  5. Edwards A, Hammond H, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric repeat loci in four human population groups. Genomics 12: 241–253Google Scholar
  6. Gill P, Kimpton CP, Sullivan K (1992) A rapid method for identifying fixed specimens by DNA profiling. Electrophoresis 13: 173–175Google Scholar
  7. Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, Eisenberg A (1989) A simple and efficient nonorganic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17: 8390Google Scholar
  8. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372Google Scholar
  9. Karlin S, Cameron EC, Williams PT (1981) Sibling and parentoffspring correlation estimation with variable family size. Proc Natl Acad Sci USA 78: 2664–2668Google Scholar
  10. Kimpton CP, Walton A, Gill P (1992) A further tetranucleotide repeat polymorphism in the VWF gene. Human Mol Genet 1: 287Google Scholar
  11. Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M (1993) Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl 3: 13–22Google Scholar
  12. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590Google Scholar
  13. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76: 379–390Google Scholar
  14. Polymeropoulos MH, Xiao H, Rath DS, Merril CR (1991a) Tetranucleotide repeat polymorphism at the human tyrosine hydrolase gene (TH). Nucleic Acids Res 19: 3753Google Scholar
  15. Polymeropoulos MH, Rath DS, Xiao H, Merril CR (1991b) Tetranucleotide repeat polymorphism at the human coagulation factor XIII A subunit gene (F13A1). Nucleic Acids Res 19: 4036Google Scholar
  16. Saiki RK, Scharf S, Faloona T, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354Google Scholar
  17. Sullivan KM, Pope S, Gill P, Robertson JM (1992) Automated DNA profiling by fluorescent labeling of PCR products. PCR Methods Appl 2: 34–40Google Scholar
  18. Waye JS, Presley L, Budowle B, Shutler GG, Fourney RM (1989) A simple method for quantifying human genomic DNA in forensic specimen extracts. Biotechniques 7: 852–855Google Scholar
  19. Weir BS (ed) (1990) Multiple tests. In: Genetic Data Analysis. Sinauer, Sunderland, Massachusetts, pp 109–110Google Scholar
  20. Weir BS (1992) Independence of VNTR alleles defined by fixed bins. Genetics 130: 873–887Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. N. Hochmeister
    • 1
  • J. M. Jung
    • 2
  • B. Budowle
    • 2
  • U. V. Borer
    • 1
  • R. Dirnhofer
    • 1
  1. 1.Department of Forensic Medicine, Institut für RechtsmedizinUniversity of BernBernSwitzerland
  2. 2.Forensic Science Research and Training CenterFBI AcademyQuanticoUSA

Personalised recommendations