Journal of Soviet Mathematics

, Volume 41, Issue 2, pp 925–955 | Cite as

The Bethe Ansatz and the combinatorics of Young tableaux

  • A. N. Kirillov
  • N. Yu. Reshetikhin
Article

Abstract

The investigation of combinatorial aspects of the method of the inverse problem is continued in this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. MacDonald, Symmetric Functions and Hall Polynomials [Russian translation], Moscow (1985).Google Scholar
  2. 2.
    G. James, Theory of Representations of the Symmetric Group [Russian translation], Moscow (1982).Google Scholar
  3. 3.
    D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Moscow (1970).Google Scholar
  4. 4.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Moscow (1972).Google Scholar
  5. 5.
    S. V. Kerov and A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm,” SIAM J. Alg. Discr. Math.,7, 116–124 (1986).Google Scholar
  6. 6.
    A. N. Sergeev, “Tensor algebra of the identity representation as a module over the Lie superalgebras gl(N/M) and Q(N),” Mat. Sb.,124, 422–430 (1984).Google Scholar
  7. 7.
    A. Berele and J. Regev, “Hook Young diagrams with applications to combinatorics and to representation of Lie superalgebras,” Adv. Math.Google Scholar
  8. 8.
    A. Berele and J. Remm, “Hook flag characters and their combinatorics,” J. Pure Appl. Algebra,35, 225–245 (1985).Google Scholar
  9. 9.
    J. Frame, G. Robinson, and R. Thrall, “The hook graphs,” Can. J. Math.,6, 316–324 (1954).Google Scholar
  10. 10.
    V. Kac, “Lie superalgebras,” Adv. Math.,26, No. 1, 8–96 (1977).Google Scholar
  11. 11.
    G. Lusztig, “Green polynomials and singularities of unipotent classes,” Adv. Math.,42, 173–204 (1981).Google Scholar
  12. 12.
    G. Lusztig, “Singularities, character formula and q-analog of weight multiplicity,” Asterisque,101, 120–130.Google Scholar
  13. 13.
    I. M. Gel'fand and A. V. Zelevinskii, “Polyhedra in the space of schemes and canonical basis in irreducible representations of gl3,” Funkts. Anal. Prilozhen.,19, No. 2, 72–75 (1985).Google Scholar
  14. 14.
    I. M. Gel'fand and A. V. Zelevinskii, Materials of the Seminar in Yurmal' [in Russian] (1985).Google Scholar
  15. 15.
    A. Lascoux and M. P. Schützenberger, Asterisque,87–88, 249–266 (1981).Google Scholar
  16. 16.
    A. Lascoux and M. P. Schützenberger, “Sur une conjecture de H. O. Foulkes,” C. R. Acad. Sci. Paris,286A, 323–324 (1978).Google Scholar
  17. 17.
    G. Thomas, “Further result on Baxter sequences and generalized Schur functions,” Lect. Notes Math.,579, 155–167 (1976).Google Scholar
  18. 18.
    D. A. Leites, “Introduction to the theory of supermanifolds,” Usp. Mat. Nauk,35, No. 1, 3–57 (1980).Google Scholar
  19. 19.
    A. N. Kirillov, “Combinatorial identities and completeness of states of Heisenberg magnetics,” in: Questions of Quantum Field Theory and Statistical Physics. 4, J. Sov. Math.,30, No. 4 (1985).Google Scholar
  20. 20.
    A. N. Kirillov, “Completeness of states of generalized Heisenberg magnetics,” in: Automorphic Functions and Number Theory. 11, J. Sov. Math.,36, No. 1 (1987).Google Scholar
  21. 21.
    A. N. Kirillov and N. Yu. Reshetikhin, “Yangians, Bethe-Ansatz and combinatorics,” Lett. Math. Phys.,12, No. 7, 500–505 (1986).Google Scholar
  22. 22.
    S. V. Kerov, A. N. Kirillov, and N. Yu. Reshetikhin, “Combinatorics, Bethe Ansatz, and representations of the symmetric group” (this issue), 50–64.Google Scholar
  23. 23.
    L. A. Takhtadzhyan and L. D. Faddeev, “Spectrum and scattering of stimuli in one-dimensional Heisenberg magnetics,” in: Differential Geometry Lie Groups and Mechanics. 4, J. Sov. Math.,24, No. 2 (1984).Google Scholar
  24. 24.
    H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette,” Z. Physik,71, No. 3–4, 205–206 (1931).Google Scholar
  25. 25.
    C. Green, “Some partitions associated with a partially ordered set,” J. Combin. Theory (A),20, 69–79 (1976).Google Scholar
  26. 26.
    C. Green and D. Kleitman, “The structure of Sperner k-families,” J. Combin. Theor. (A),20, 41–68 (1976).Google Scholar
  27. 27.
    S. V. Fomin, “Finite partially ordered sets and Young diagrams,” Dokl. Akad. Nauk SSSR,243, No. 5, 1144–1147 (1978).Google Scholar
  28. 28.
    D. Knuth, The Art of Computer Programming [Russian translation], Vol. 3, Moscow (1978).Google Scholar
  29. 29.
    A. V. Zelevenskii, “Small resolutions of singularities of Schubert varieties,” Funkts. Anal. Prilozhen.,17, No. 2, 75–77 (1983).Google Scholar
  30. 30.
    W. J. Holman and L. C. Biedenharn, “The representations and tensor operators of unitary groups,” in: Group Theory and Its Applications, Vol. II, E. M. Loebl (ed.), Academic Press, New York-London (1971).Google Scholar
  31. 31.
    R. Hotta and T. Springer, “A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups,” Inv. Math.,41, 113–127 (1977).Google Scholar
  32. 32.
    W. Borho and R. MacPherson, “Representations of Weyl groups and intersection homology of nilpotent varieties,” C. R. Acad. Sci. Paris,292, 707–710 (1981).Google Scholar
  33. 33.
    L. D. Faddeev, “Quantum completely integrable models of field theory,” in: Problems of Quantum Field Theory. Proceedings of the International Conference on Nonlocal Field Theory. Alushta, 1979 [in Russian], JINR (1979), pp. 249–299.Google Scholar
  34. 34.
    A. G. Izergin and V. E. Korepin, “Problem of describing all L-operators for R-matrices of the XXX and XXZ models,” in: Questions of Quantum Field Theory and Statistical Physics, Vol. 4, J. Sov. Math.,30, No. 4 (1985).Google Scholar
  35. 35.
    V. G. Drinfel'd, “Hopf algebras and the quantum Yang-Baxter equation,” Dokl. Akad. Nauk SSSR,283, No. 3, 1060–1064 (1985).Google Scholar
  36. 36.
    P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, “Yang-Baxter equation and representation theory. I,” Lett. Math. Phys.,5, No. 5, 393–403 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. N. Kirillov
  • N. Yu. Reshetikhin

There are no affiliations available

Personalised recommendations