Journal of Soviet Mathematics

, Volume 41, Issue 2, pp 898–915 | Cite as

Quantum groups

  • V. G. Drinfel'd


The paper is the expanded text of a report to the International Mathematical Congress in Berkeley (1986). In it a new algebraic formalism connected with the quantum method of the inverse problem is developed.

Examples are constructed of noncommutative Hopf algebras and their connection with solutions of the Yang-Baxter quantum identity are discussed.


Inverse Problem Hopf Algebra Quantum Group Quantum Method Algebraic Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. W. Milnor and J. C. Moore, “On the structure of Hopf algebras,” Ann. Math.,81, No. 2, 211–264 (1965).Google Scholar
  2. 2.
    M. E. Sweedler, Hopf Algebras, Mathematical Lecture Notes Series, Benjamin, N.Y. (1969).Google Scholar
  3. 3.
    E. Abe, Hopf Algebras, Cambridge Tracts in Math., No. 74, Cambridge Univ. Press, Cambridge-New York (1980).Google Scholar
  4. 4.
    G. M. Bergman, “Everybody knows what a Hopf algebra is,” Contemporary Mathematics,43, 25–48 (1985).Google Scholar
  5. 5.
    M. E. Sweedler, “Integrals for Hopf algebras,” Ann. Math.,89, No. 2, 323–335 (1969).Google Scholar
  6. 6.
    R. G. Larson, “Characters of Hopf algebras,” J. Algebra,17, No. 3, 352–368 (1971).Google Scholar
  7. 7.
    W. C. Waterhouse, “Antipodes and group-likes in finite Hopf algebras,” J. Algebra,37, No. 2, 290–295 (1975).Google Scholar
  8. 8.
    D. E. Radford, “The order of the antipode of a finite dimensional Hopf algebra is finite,” Am. J. Math.,98, No. 2, 333–355 (1976).Google Scholar
  9. 9.
    H. Shigano, “A correspondence between observable Hopf ideals and left coideal subalgebras,” Tsukuba J. Math.,1, 149–156 (1977).Google Scholar
  10. 10.
    E. J. Taft and R. L. Wilson, “There exist finite-dimensional Hopf algebras with antipodes of arbitrary even order,” J. Algebra,162, No. 2, 283–291 (1980).Google Scholar
  11. 11.
    H. Shigano, “On observable and strongly observable Hopf ideals,” Tsukuba J. Math.,6, No. 1, 127–150 (1982).Google Scholar
  12. 12.
    B. Pareigis, “A noncommutative noncocommutative Hopf algebra in ‘nature’,” J. Algebra,70, No. 2, 356–374 (1981).Google Scholar
  13. 13.
    G. I. Kats, “Generalization of the group duality principle,” Dokl. Akad. Nauk SSSR,138, No. 2, 275–278 (1961).Google Scholar
  14. 14.
    G. I. Kats, “Compact and discrete ring groups,” Ukr. Mat. Zh.,14, No. 3, 260–270 (1962).Google Scholar
  15. 15.
    G. I. Kats, “Ring groups and duality principles,” Tr. Moskov. Mat. Obshch.,12, 259–303 (1963);13, 84–113 (1965).Google Scholar
  16. 16.
    G. I. Kats and V. G. Palyutkin, “Example of a ring group generated by Lie groups,” Ukr. Mat. Zh.,16, No. 1, 99–105 (1964).Google Scholar
  17. 17.
    G. I. Kats and V. G. Palyutkin, “Finite ring groups,” Tr. Moskov. Mat. Obshch.,15, 224–261 (1966).Google Scholar
  18. 18.
    G. I. Kats, “Extensions of groups which are ring groups,” Mat. Sb.,76, No. 3, 473–496 (1968).Google Scholar
  19. 19.
    G. I. Kats, “Some arithmetic properties of ring groups,” Funkts. Anal. Prilozhen.,6, No. 2, 88–90 (1972).Google Scholar
  20. 20.
    L. I. Vainerman and G. I. Kats, “Nonunimodular ring groups and Hopf-von Neumann algebras,” Mat. Sb.,94, No. 2, 194–225 (1974).Google Scholar
  21. 21.
    M. Enock and J.-M. Schwartz, “Une dualite dans les algebres de von Neumann,” Bull. Soc. Mat. France, Mem. No. 44 (1975).Google Scholar
  22. 22.
    J.-M. Schwartz, “Relations entre ‘ring groups’ et algebres de Kac,” Bull. Sci. Math. (2),100, No. 4, 289–300 (1976).Google Scholar
  23. 23.
    M. Enock, “Produit croise d'une algebre de von Neumann par une algebre de Kac,” J. Funct. Analysis,26, No. 1, 16–47 (1977).Google Scholar
  24. 24.
    M. Enock and J.-M. Schwartz, “Produit croise d'une algebre de von Neumann par une algebre de Kac, II,” Publ. RIMS Kyoto Univ.,16, No. 1, 198–232 (1980).Google Scholar
  25. 25.
    J. de Canniere, M. Enock, and J.-M. Schwartz, “Algebres de Fourier associees a une algebre de Kac,” Math. Ann.,245, No. 1, 1–22 (1979).Google Scholar
  26. 26.
    J. de Canniere, M. Enock, and J.-M. Schwartz, “Sur deux resultats d'analyse harmonique non-commutative: Une application de la theorie des algebres de Kac,” J. Operator Theory,5, No. 2, 171–194 (1981).Google Scholar
  27. 27.
    V. G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations,” Dokl. Akad. Nauk SSSR,268, No. 2, 285–287 (1982).Google Scholar
  28. 28.
    V. G. Drinfel'd, “Hopf algebras and the quantum Yang-Baxter equation,” Dokl. Akad. Nauk SSSR,283, No. 5, 1060–1064 (1985).Google Scholar
  29. 29.
    I. M. Gel'fand and I. V. Cherednik, “Abstract Hamiltonian formalism for classical Yang-Baxter bundles,” Usp. Mat. Nauk,38, No. 3, 3–21 (1983).Google Scholar
  30. 30.
    I. V. Cherednik, “Bäcklund-Darboux transformations for classical Yang-Baxter bundles,” Funkts. Anal. Prilozhen.,17, No. 2, 88–89 (1983).Google Scholar
  31. 31.
    I. V. Cherednik, “Definition of τ-functions for generalized affine Lie algebras,” Funkts. Anal. Prilozhen.,17, No. 3, 93–95 (1983).Google Scholar
  32. 32.
    I. M. Gel'fand and I. Ya. Dorfman, “Hamiltonian operators and the classical Yang-Baxter equations,” Funkts. Anal. Prilozhen.,16, No. 4, 1–9 (1982).Google Scholar
  33. 33.
    A. Weinstein, “The local structure of Poisson manifolds,” J. Diff. Geometry,18, No. 3, 523–557 (1983).Google Scholar
  34. 34.
    J. A. Schouten, “Über differentialkomitanten zweier kontravarianter Grössen,” Nederl. Akad. Wetensch. Proc. Ser. A,43, 449–452 (1940).Google Scholar
  35. 35.
    L. D. Faddeev and L. A. Takhtajan, Hamiltonian Approach to Soliton Theory, Springer-Verlag (to appear).Google Scholar
  36. 36.
    L. D. Faddeev, Integrable Models in (1+1)-Dimensional Quantum Field Theory (Lectures in Les Houches, 1982), Elsevier (1984).Google Scholar
  37. 37.
    E. K. Sklyanin, “Quantum version of the method of the inverse scattering problem,” in: Differential Geometry, Lie Groups, and Mechanics. III, J. Sov. Math.,19, No. 5 (1982).Google Scholar
  38. 38.
    L. D. Faddeev and N. Yu. Reshetkhin, “Hamiltonian structures for integrable models of field theory,” Teor. Mat. Fiz.,56, No. 3, 323–343 (1983).Google Scholar
  39. 39.
    M. A. Semenov-Tyan-Shanskii, “So what is the classical r-matrix,” Funkts. Anal. Prilozhen.,17, No. 4, 17–33 (1983).Google Scholar
  40. 40.
    A. A. Belavin and V. G. Drinfel'd, “Solutions of the classical Yang-Baxter equation for simple Lie algebras,” Funkts. Anal. Prilozhen.,16, No. 3, 1–29 (1982).Google Scholar
  41. 41.
    A. A. Belavin and V. G. Drinfeld, “Triangle equations and simple Lie algebras,” Sov. Sci. Rev., Sec. C, 4, 93–165 (1984). Harwood Academic Publishers, Chur (Switzerland), New York.Google Scholar
  42. 42.
    A. A. Belavin and V. G. Drinfel'd, “Classical Yang-Baxter equation for simple Lie algebras,” Funkts. Anal. Prilozhen.,17, No. 3, 69–70 (1983).Google Scholar
  43. 43.
    M. A. Semenov-Tian-Shansky, “Dressing transformations and Poisson group actions,” Publ. RIMS Kyoto University,21, No. 6, 1237–1260 (1985).Google Scholar
  44. 44.
    E. K. Sklyanin, “On complete integrability of the Landau-Lifshitz equation,” LOMI Preprint E-3-1979, Leningrad (1979).Google Scholar
  45. 45.
    P. P. Kulish and E. K. Sklyanin, “Solutions of the Yang-Baxter equation,” in: Differential Geometry, Lie Groups, and Mechanics. III, J. Sov. Math.,19, No. 5 (1982).Google Scholar
  46. 46.
    A. A. Belavin, “Discrete groups and integrability of quantum systems,” Funkts. Anal. Prilozhen.,14, No. 4, 18–26 (1980).Google Scholar
  47. 47.
    G. Andrews, Theory of Partitions [Russian translation], Nauka, Moscow (1982).Google Scholar
  48. 48.
    P. P. Kulish and N. Yu. Reshetkhin, “Quantum linear problem for the sine-Gordon equation and higher representations,” in: Questions of Quantum Field Theory and Statistical Physics. 2, J. Sov. Math.,23, No. 4 (1983).Google Scholar
  49. 49.
    E. K. Sklyanin, “An algebra generated by quadratic relations,” Usp. Mat. Nauk,40, No. 2, 214 (1985).Google Scholar
  50. 50.
    M. Jimbo, “Quantum R-matrix for the generalized Toda system,” Preprint RIMS-506, Kyoto University, 1985.Google Scholar
  51. 51.
    M. Jimbo, “A q-difference analogue of Ug and the Yang-Baxter equation,” Lett. Math. Phys.,10, 63–69 (1985).Google Scholar
  52. 52.
    M. Jimbo, “A q-analogue of U(gl(N+1)), Hecke algebra and the Yang-Baxter equation,” Preprint RIMS-517, Kyoto University, 1985.Google Scholar
  53. 53.
    C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Phys. Rev. Lett.,19, No. 23, 1312–1314 (1967).Google Scholar
  54. 54.
    V. G. Drinfel'd, “New realization of Yangians and quantized affine algebras,” Preprint FTINT AN UkrSSR, No. 30–86, Kharkov (1986).Google Scholar
  55. 55.
    V. G. Kac, Infinite-Dimensional Lie Algebras, Birkhäuser, Boston-Basel-Stuttgart (1983).Google Scholar
  56. 56.
    P. Deligne and J. S. Milne, “Tannaka Categories,” in: Hodge Cycles and Motives [Russian translation], Mir, Moscow (1985), pp. 94–201.Google Scholar
  57. 57.
    V. V. Lyubashenko, “Hopf algebras and symmetries,” Kievsk. Politekh. Inst., Kiev (1985), Dep. RZhMat, 1985, No. 8A447.Google Scholar
  58. 58.
    R. J. Baxter, “Partition function of the eight-vertex lattice model,” Ann. Phys.,70, 193–228 (1972).Google Scholar
  59. 59.
    V. E. Korepin, “Analysis of bilinear relations of the six-vertex model,” Dokl. Akad. Nauk SSSR,265, No. 6, 1361–1364 (1982).Google Scholar
  60. 60.
    V. O. Tarasov, “Structure of quantized L-operators for the L matrix of the XXZ-model,” Teor. Mat. Fiz.,61, No. 2, 163–173 (1984).Google Scholar
  61. 61.
    V. O. Tarasov, “Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum HamiItonians,” Teor. Mat. Fiz.,63, No. 2, 175–196 (1985).Google Scholar
  62. 62.
    N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnetics with O(n) and Sp(2k)-symmetries,” Teor. Mat. Fiz.,63, No. 3, 347–366 (1985).Google Scholar
  63. 63.
    P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, “Yang-Baxter equation and representation theory. I,” Lett. Math. Phys.,5, No. 5, 393–403 (1985).Google Scholar
  64. 64.
    V. G. Drinfel'd, “Degenerate affine Hecke algebras and Yangians,” Funkts. Anal. Prilozhen.,20, No. 1, 69–70 (1986).Google Scholar
  65. 65.
    L. A. Takhtadzhyan, “Quantum method of the inverse problem and algebraized matrix Bethe ansatz,” in: Questions of Quantum Field Theory and Statistical Physics, J. Sov. Math.,23, No. 4 (1983).Google Scholar
  66. 66.
    P. P. Kulish and N. Yu. Reshetikhin, “Generalized Heisenberg ferromagnetics and the Gross-Neveu model,” Zh. Eksp. Teor. Fiz.,80, No. 1, 214–227 (1981).Google Scholar
  67. 67.
    N. Yu. Reshetikhin, “Method of functional equations in the theory of precisely solvable quantum systems,” Zh. Eksp. Teor. Fiz.,84, No. 3, 1190–1201 (1983).Google Scholar
  68. 68.
    N. Yu. Reshetikhin, “Exactly solvable quantum mechanical systems on a lattice, connected with classical Lie algebras,” in: Differential Geometry, Lie Groups, and Mechanics. V. J. Sov. Math.,28, No. 4 (1985).Google Scholar
  69. 69.
    E. K. Sklyanin and L. D. Faddeev, “Quantum-mechanical approach to completely integrable models of field theory,” Dokl. Akad. Nauk SSSR,243, No. 6, 1430–1433 (1978).Google Scholar
  70. 70.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum method of the inverse problem. I,” Teor. Mat. Fiz.,40, No. 2, 194–220 (1979).Google Scholar
  71. 71.
    L. A. Takhtadzhyan and L. D. Faddeev, “Quantum method of the inverse problem and Heisenberg's XX-model,” Usp. Mat. Nauk,34, No. 5, 13–63 (1979).Google Scholar
  72. 72.
    L. D. Faddeev, “Quantum completely integrable models in field theory,” Sov. Sci. Rev., Sec. C,1, 107–155 (1980).Google Scholar
  73. 73.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” in: Integrable Quantum Field Theories (Lecture Notes in Physics, Vol. 151), Springer-Verlag, Berlin-Heidelberg-New York (1982), pp. 61–119.Google Scholar
  74. 74.
    I. V. Cherednik, “A method of constructing factorized S-matrices in elementary functions,” Teor. Mat. Fiz.,43, No. 1, 117–119 (1980).Google Scholar
  75. 75.
    A. V. Zamolodchikov and V. A. Fateev, “Model factorized S-matrix and integrable Heisenberg chain with spine. I,” Yad. Fiz.,32, No. 2, 581–590 (1980).Google Scholar
  76. 76.
    A. G. Izergin and V. E. Korepin, “The inverse scattering approach to the quantum Shabat-Mikhailov model,” Commun. Math. Phys.,79, 303–316 (1981).Google Scholar
  77. 77.
    V. V. Bazhanov, “Trigonometric solutions of triangle equations and classical Lie algebras,” Preprint IFVE 85-18, Serpukhov (1985).Google Scholar
  78. 78.
    D. I. Gurevich, “Yang-Baxter equation and generalization of formal Lie theory,” Dokl. Akad. Nauk SSSR,288, No. 4, 797–801 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • V. G. Drinfel'd

There are no affiliations available

Personalised recommendations