Archiv der Mathematik

, Volume 57, Issue 5, pp 424–431 | Cite as

An explicit model for the complex representations of the finite general linear groups

  • N. F. J. Inglis
  • J. Saxl
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. W.Baddeley, Models and involution models for wreath products and certain Weyl groups. To appear in J. London Math. Soc.Google Scholar
  2. [2]
    E. Bannai, N. Kawanaka andS. Y. Song, The character table of the Hecke algebra\(H(GL_2 (\mathbb{F}_q ), Sp_{2n} (\mathbb{F}_q ))\), 431-02. J. Algebra129, 320–366 (1990).Google Scholar
  3. [3]
    J. A. Green, The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402–447 (1955).Google Scholar
  4. [4]
    N. F. J. Inglis, R. W. Richardson andJ. Saxl, An explicit model for the complex representations ofS n. Arch. Math.54, 258–259 (1990).Google Scholar
  5. [5]
    G. D.James and A.Kerber, The representation theory of the symmetric group. Encyclopedia Math. Appl.16, Cambridge-New York 1981.Google Scholar
  6. [6]
    A. A. Kljačko, Models for complex representations of the groupsGL(n, q) and Weyl groups. Soviet Math. Dokl. (3)24, 496–499 (1981).Google Scholar
  7. [7]
    A. A. Klyachko, Models for the complex representations of the groupsGL(n, q). Math. USSR Sb. (2)48, 365–379 (1984).Google Scholar
  8. [8]
    I. G. Macdonald, Symmetric functions and Hall polynomials (in Russian). Mir, Moscow 1985.Google Scholar
  9. [9]
    A.Zelevinsky, Representations of finite classical groups —a Hopf algebra approach. LNM869, Berlin-Heidelberg-New York 1981.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • N. F. J. Inglis
    • 1
  • J. Saxl
    • 1
  1. 1.D.P.M.M.S.Cambridge

Personalised recommendations