Embedded minimal surfaces: Forces, topology and symmetries

  • Antonio Ros


We prove topological uniqueness theorems for embedded minimal surfaces in ℝ3 under the assumption that certain forces associated to these surfaces are vertical. We give applications to minimal surfaces with symmetries and with free boundary.

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACh]
    Anderson, M.T., Cheeger, J.:C α-compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Diff. Geom.35, 265–281 (1992)Google Scholar
  2. [Ch]
    Cheeger, J.: Finiteness theorems for Riemannian manifolds. Amer. J. Math.92, 64–71 (1970)Google Scholar
  3. [C]
    Costa, C.: Example of a complete minimal immersion in ℝ3 of genus one and three embedded ends. Bull. Soc. Bras. Math.15, 47–54 (1984)Google Scholar
  4. [HM]
    Hoffman, D., Meeks, W.H., III.: The strong halfspace theorem for minimal surfaces. Invent. Math.101, 373–377 (1990)Google Scholar
  5. [HM1]
    Hoffman, D., Meeks, W.H., III.: Embedded minimal surfaces of finite topology. Ann. Math.131, 1–34 (1990)Google Scholar
  6. [K]
    Kasue, A.: A convergence theorem for Riemannian manifolds and some applications. Nagoya Math. J.114, 21–51 (1989)Google Scholar
  7. [KK]
    Korevaar, N., Kusner, R.: The structure of constant mean curvature embeddings in Euclidean three-space. In: Greene, R., Yau, S.T. (eds.) Proc. Symp. Pure Math.54 part 1, 291–297 (1993)Google Scholar
  8. [LR]
    Langevin, R., Rosenberg, H.: A maximum principle at infinity for minimal surfaces and applications. Duke Math. J.57, 819–828 (1988)Google Scholar
  9. [LoR]
    Lopez, F., Ros, A.: On embedded complete minimal surfaces of genus zero. J. Diff. Geom.33, 293–300 (1991)Google Scholar
  10. [M]
    Meeks, W.H., III.: The topological uniqueness minimal surfaces in three-dimensional Euclidean space. Topology20, 389–410 (1981)Google Scholar
  11. [MR]
    Meeks, W.H., III., Rosenberg, H.: The maximum principle at infinity for minimal surfaces in flat three manifolds. Comment. Math. Helv.65, 255–270 (1990)Google Scholar
  12. [kw]
    Meeks, W.H., III., White, B.: Minimal surfaces bounded by a pair of convex planar curves. Bull. A.M.S.24, 179–184 (1991)Google Scholar
  13. [MW1]
    Meeks, W.H., III., White, B.: Minimal surfaces bounded by convex curves in parallel planes. Comment. Math. Helv.66, 263–278 (1991)Google Scholar
  14. [MY]
    Meeks, W.H., III., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Zeit.179, 151–168 (1982)Google Scholar
  15. [MY1]
    Meeks, W.H., III., Yau, S. T.: The topological uniqueness of complete minimal surfaces of finite topological type. Topology31, 305–316 (1992)Google Scholar
  16. [O]
    Osserman, R.: A survey of minimal surfaces. Dover Publications, New York, 2nd edn, 1986Google Scholar
  17. [PR]
    Perez, J., Ros, A.: Some uniqueness and nonexistence theorems for embedded minimal surfaces. Math. Ann.295, 513–525 (1993)Google Scholar
  18. [RR]
    Ritore, M. Ros, A.: The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds. Trans. of Amer. Math. Soc.348, 391–410 (1996)Google Scholar
  19. [R]
    Ros, A.: The Gauss map of minimal surfaces. PreprintGoogle Scholar
  20. [S]
    Schoen, R.: Uniqueness, symmetry and embeddedness of minimal surfaces. J. Diff. Geom.18, 791–809 (1983)Google Scholar
  21. [S1]
    Schoen, R.: Estimates for stable minimal surfaces in three dimensional manifolds. Volume 103 of Annals of Math. Studies. Princeton University Press, 1983Google Scholar
  22. [Sh]
    Shiffman, M.: On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Ann. of Math.63, 77–99 (1956)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Antonio Ros
    • 1
  1. 1.Departamento de Geometria y Topologia, Facultad de CienciasUniversidad de GranadaSpain

Personalised recommendations