CHEMOECOLOGY

, Volume 4, Issue 1, pp 8–18

Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals

  • Andreas Detzel
  • Michael Wink
Research papers

Abstract

The influence of 63 dietary allelochemicals (alkaloids, terpenes, glycosides,etc.) on the feeding behaviour of bees (Apis mellifera) was tested in terms of deterrency and attraction. For 39 compounds a deterrent (mostly alkaloids, coumarins and saponins) and for 3 compounds an attractive response (mostly terpenes) was obtained in choice tests, which allowed the calculation of respective ED50-values. Under no-choice conditions, 17 out of 29 allelochemicals caused mortality at concentrations between 0.003 and 0.6%. Especially toxic were alkaloids, saponins, cardiac glycosides and cyanogenic glycosides. These data show that bees which are confronted with plant allelochemicals in nectar and pollen, are not especially adapted (i.e. insensitive) to the plants' defence chemistry. GLC and GLS-MS data are given on the alkaloid composition of nectar and pollen ofBrugmansia aurea, Atropa belladonna andLupinus polyphyllus.

Key words

alkaloids feeding deterrence toxicity nectar pollen allelochemicals chemical defence Hymenoptera honeybee Apis mellifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams CM, Bernays EA (1978) The effect of combinations of deterrents on feeding behaviour ofLocusta migratoria. Entomol exp appl 23:101–109Google Scholar
  2. Amiot MI, Aubert S, Gonnet M, Tacchini M (1989) Les composes phenolique des miels: etude preliminaire sur l'identification et la quantification par familles. Apidologie 20:115–125Google Scholar
  3. Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie 8:349–356Google Scholar
  4. Baker HG, Baker I (1975) Studies on nectar constitution and pollinator-plant coevolution. Pp 100–140in Gilbert LE, Raven PH (eds) Coevolution of Animals and Plants. Austin: Univ of Texas PressGoogle Scholar
  5. Barragan de Dominguez MC (1973) Contribucion al estudio de mieles toxicas colombianas. Rev Colomb Cienc Quim-Farm 2:5–31Google Scholar
  6. Bentley MD, Leonard DE, Reynolds EK, Leach S, Beck AB, Murakoshi I (1984) Lupine alkaloids as larval feeding deterrents for spruce budworm,Choristoneur a fumiferana (Lepidoptera: Tortricidae). Ann Entomol Soc Am 77:398–400Google Scholar
  7. Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892Google Scholar
  8. Bernays EA, Chapman R (1987) The evolution of deterrent responses in plant-feeding insects. Pp 159–173in Bernays E, Chapman M, Stoffolano J (eds) Perspectives in Chemoreception and Behaviour. New York, Heidelberg: Springer VerlagGoogle Scholar
  9. Bestmann HJ Claßen B, Kobold U, Vostrowsky O, Klingauf F, Stobel H, Knobloch K (1984) Pflanzliche Insektizide II. Das ätherische Öl aus Blättern des Balsamkrautes,Chysanthemum balsamita L. Insektizide Wirkung und Zusammensetzung. Z Naturforsch 39c:543–547Google Scholar
  10. Blades D, Mitchell BK (1986) Effects of alkaloids on feeding byPhormia regina. Entomol exp appl 41:299–304Google Scholar
  11. Borg-Karlson A (1990) Chemical and ethological studies of pollination in the genusOphrys (Orchidaceae). Phytochemistry 29:1359–1387Google Scholar
  12. Cavin JC, Rodrigues E (1988) The influence of dietaryβ-carboline alkaloids on growth rates, food consumption and food utilisation of larvae ofSpodoptera exigua. J Chem Ecol 14:475–484Google Scholar
  13. Christen P, Roberts MF, Phillipson JD, Evans WC (1990) Alkaloids of hairy root cultures of aBrugmansia candida hybrid. Plant Cell Reports 9:101–104Google Scholar
  14. Clinch PG, Palmer-Jones T, Forster IW (1972). Effect on honeybees of nectar from the yelllow kowhai (Sophora microphylla Ait.). NZ J Agric Res 15:194–201Google Scholar
  15. Culvenor CCJ, Edgar JA, Smith LW (1981) Pyrrolizidine alkaloids in honey fromEchium plantagineum. J Agric Food Chem 29:958–960Google Scholar
  16. D'Arcy WG, D'Arcy NS, Keating RC (1990) Scented anthers in the Solanaceae. Rhodora 92:50–53Google Scholar
  17. Deinzer ML, Thompson PA (1977) Pyrrolizidine alkaloids: Their occurrence in honey from tansy ragworth (Senecio jacobaea L.). Science 195:497–499Google Scholar
  18. Dethier VG, Bowdan E (1989) The effect of allelochemicals on sugar receptors and feeding behaviour of the bowfly. Physiol Entomol 14:127–136Google Scholar
  19. Detzel A (1990) Untersuchungen zum Einfluß pflanzlicher Sekundärstoffe auf phytophage insekten am Beispiel vonSyntomeida epilais (Ctenuchidae, Lepidoptera) undApis mellifera (Apidae, Hymenoptera). Master Thesis, Univ. MainzGoogle Scholar
  20. Devitt BF, Philogene BJR, Kinks CF (1980) Effects of veratrine, berberine, nicotine and atropine on developmental characteristics and survival of the dark-sided cutworm,Euxoa messaria. Phytoprotection 61:88–102Google Scholar
  21. Dobson JEM 1988: Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? Amer J Bot 75:170–182Google Scholar
  22. Dobson JEM, Bergström J, Bergström G, Groth I (1987) Pollen and flower volatiles in twoRosa species. Phytochemistry 26:3171–3173Google Scholar
  23. Free JB (1963) The flower constancy of honeybees. J Anim Ecol 32:119–131Google Scholar
  24. Frisch K von (1914) Der Farbensinn und Formensinn der Bienen. Zool J (Physiol) 35:1–188Google Scholar
  25. Frisch K von (1934) Über den Geschmacksinn der Biene. Z vergl Phys 21:2–154Google Scholar
  26. Gill JS (1972) Studies on insect feeding deterrents with special reference to the fruit extracts of the neem tree. PHD thesis, University of LondonGoogle Scholar
  27. Harborne JB (1988) Introduction to Ecological Biochemistry. London, New York: Academic PressGoogle Scholar
  28. Holzinger F, Frick C, Wink M (1992) Molecular base for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480Google Scholar
  29. Janzen D, Inster HB, Bell EA (1987) The toxicity of secondary compounds to the seed eating larvae of the bruchid beetle,Callosobruchus maculatus. Phytochemistry 16:223–227Google Scholar
  30. Kolterman R (1969) Lern- und Vergessensprozesse bei der Honigbiene — aufgezeigt anhand von Duftdressuren. Z Physiol 63:310–334Google Scholar
  31. Larson RA, Marley KA, Tuveson RW, Berenbaum MR (1988) Carboline alkaloids mechanisms of phototoxicity to bacteria and insects. Photochem & Photobiol 48:665–674Google Scholar
  32. Lüttge U (1977) Nectar composition and membrane transport of sugars and amino acids: a review on the present state of nectar research. Apidologie 8:305–319Google Scholar
  33. Masters AR (1991) Dual role of pyrrolizidine alkaloids in nectar. J Chem Ecol 17:195–205Google Scholar
  34. Mauricio A, Grafl J 1969. Das Trachtpflanzenbuch. München: Ehrenwirth-VerlagGoogle Scholar
  35. Maurizio A (1945) Giftige Bienenpflanzen. Beihefte zur SBL 1:430–441Google Scholar
  36. Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. Pp 195–217in Barton-Brown L (ed.) Experimental Analysis of Insect Behaviour. New York: Springer VerlagGoogle Scholar
  37. Miles DH, Ly AM, Randle SA, Hedin PA, Burks MLJ (1987) Alkaloid insect antifeedants fromVirola calophylla. Agric Food Chem 35:794–797Google Scholar
  38. Nathanson J (1984) Caffeine and related methylxanthines: possible natural pesticides. Science 226:184–187Google Scholar
  39. Ribbands CR (1949) The foraging method of individual honeybees. J Anim Ecol 18:47–66Google Scholar
  40. Rosenthal GA, Janzen DH (eds) (1979) Herbivores. Their Interaction with Secondary Plant Metabolites. London, New York: Academic PressGoogle Scholar
  41. Stephenson AG (1982) Iridoid glycosides in the nectar ofCatalpa speciosa are unpalatable to nectar thieves. J Chem Ecol 8:1025–1034Google Scholar
  42. Schulz-Langner E (1967) Über den Trachtwert der Rosskastanie (Aesculus hippocastanum) unter besonderer Berücksichtigung des Saponingehaltes im Nektar. Z Bienenforsch 9:49–65Google Scholar
  43. Scogin R (1979) Nectar constituents in the genusFremontia (Sterculiaceae): sugars, flavonoids, and proteins. Bot Gaz 140:29–31Google Scholar
  44. Shaver T, Lukefahr MJ (1969) Effects of flavonoid pigments and gossypol on growth and development of bollworm, tobacco budworm und pink bollworm. J Econ Entomol 62:643–646Google Scholar
  45. Spector M, O'Neal S, Racker E (1980) Reconstitution of Na+/K+ pump of Ehrlich ascites tumour and enhancement of effects by quercetin. J Biol Chem 255:5504–5507Google Scholar
  46. Stephenson AG (1982) Iridoid glycosides in the nectar ofCatalpa speclosa are unpalatable for nectar thieves. J Chem Ecol 8:1025–1034Google Scholar
  47. Sosath S (1984) Honige von Euphorbiaceen als Nahrungs- und Genussmittel. Dissertation at the DKFZ, Heidelberg, GermanyGoogle Scholar
  48. Stanley RG, Linskens HF (1985) Pollen. D-Greifenberg: Urs Freund VerlagGoogle Scholar
  49. Thiery D, Bluet, JM, Pham-Delegue M, Etievant P, Masson C (1990) Sunflower aroma detection by the honeybee. J Chem Ecol 16:701–711Google Scholar
  50. Towers GHN (1986) Significance of phototoxic phytochemicals in insect herbivores. J Chem Ecol 12:813–821Google Scholar
  51. Vogel S (1977) Nektarien und ihre ökologische Bedeutung. Apidologie 8:321–335Google Scholar
  52. Wagner H (1988) Pharmazeutische Biologie. Stuttgart-New York: Gustav Fischer VerlagGoogle Scholar
  53. Wells H, Wells PH (1983) Honeybee foraging ecology: optimal diet, minimal uncertainty or individual constancy? J Anim Ecol 52:829–836Google Scholar
  54. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233Google Scholar
  55. Wink M, Schneider D (1990) Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais andCreatonotos transiens). J Comp Physiol B 160:389–400Google Scholar
  56. Wink M (1992) Roles of quinolizidine alkaloids in plant-insect interactions. Focus on insect-plant interactions. Pp 133–169in Bernays EA (ed.) Insect-Plant Interactions, Vol IV. Boca Raton, FL: CRC PressGoogle Scholar
  57. Wink M (1993a) Allelochemical properties or the raison d'etre of Alkaloids. Pp. 1–118in Cordell J (ed.) The Alkaloids, Vol 43. New York: Academic PressGoogle Scholar
  58. Wink M (1993b) Quinolizidine alkaloids. Pp 197–239in Waterman P (ed.) Methods in Plant Biochemistry, Vol 8, Alkaloids and Sulfur Compounds. New York: Academic PressGoogle Scholar
  59. Wink M, Witte L (1991) Storage of quinolizidine alkaloids inMacrosiphon albifrons andAphis genistae (Homoptera: Aphididae). Entomol Gener 15:237–254Google Scholar
  60. Wink M, Schiebel JM, Witte L, Hartmann T (1982) Quinolizidine alkaloids from plants and their cell suspension cultures. Planta Medica 44:15–20Google Scholar
  61. Wink M, Witte L, Hartmann T, Theuring C, Volz V (1983) Accumulations of quinolizidine alkaloids in plants and cell suspension cultures: generaLupinus, Cytisus, Baptisia, Genista, Laburnum, andSophora. Planta Medica 48:253–257Google Scholar
  62. Witte L, Müller K, Arfmann H (1987) Investigation of the alkaloid pattern ofBrugmansia innoxia plants by GLC-MS. Planta Medica 53:192–197Google Scholar
  63. Zuniga GE, Corcuera LJ (1986) Effect of gramine on the resistance of barley seedlings to the aphidPhopalosiphon padi. Entomol exp appl 40:259–262Google Scholar
  64. Zuniga GE, Varanda EM, Corcuera LJ (1988) Effect of gramine on the feeding behaviour of the aphidSchizaphis graminum. Entomol exp appl 47:161–165Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Andreas Detzel
    • 1
  • Michael Wink
    • 1
  1. 1.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations