Central limit theorem for traces of large random symmetric matrices with independent matrix elements

  • Ya. Sinai
  • A. Soshnikov


We study Wigner ensembles of symmetric random matricesA=(aij),i, j=1,...,n with matrix elementsaij,ij being independent symmetrically distributed random variables
$$a_{ij} = a_{ji} = \frac{{\xi _{ij} }}{{n^{\tfrac{1}{2}} }}.$$

We assume that Var\(\xi _{ij} = \frac{1}{4}\), fori<j, Var ξij ≤ const and that all higher moments of ξij also exist and grow not faster than the Gaussian ones. Under formulated conditions we prove the central limit theorem for the traces of powers ofA growing withn more slowly than\(\sqrt n\). The limit of Var (TraceAp),\(1 \ll p \ll \sqrt n\), does not depend on the fourth and higher moments of ξij and the rate of growth ofp, and equals to\(\frac{1}{\pi }\). As a corollary we improve the estimates on the rate of convergence of the maximal eigenvalue to 1 and prove central limit theorem for a general class of linear statistics of the spectra.


Random matrices Wigner semi-circle law Central limit theorem Moments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Sociedade Brasileira de Matemática 1998

Authors and Affiliations

  • Ya. Sinai
    • 1
    • 2
  • A. Soshnikov
    • 3
  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Landau Institute of Theoretical PhysicsMoscowRussia
  3. 3.Institute for Advanced StudyPrincetonUSA

Personalised recommendations