Advertisement

Inventiones mathematicae

, Volume 119, Issue 1, pp 243–265 | Cite as

On monodromy of complex projective structures

  • Michael Kapovich
Article

Summary

We prove that for any nonelementary representation ρ : π1(S → SL (2, ℂ)) of the fundamental group of a closed orientable hyperbolic surfaceS there exists a complex projective structure onS with the monodromy ϱ.

Keywords

Fundamental Group Projective Structure Hyperbolic surfaceS Complex Projective Structure Orientable Hyperbolic surfaceS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Appell, E. Goursat, P. Fatou: Théorie des Functions Algébraiques. Vol. 2, Paris, Gauthier-Villars 1930.Google Scholar
  2. 2.
    C. Banica, O. Stanasila: Algebraic methods in the global theory of complex spaces. London, New York: Wiley, 1976Google Scholar
  3. 3.
    J. Birman: Braids, links, and mapping class groups, Princeton University Press, 1975Google Scholar
  4. 4.
    S. Choi, W. Goldman: Convex real projective structures on closed surfaces are closed. Proceedings of Amercian Math. Society118 (1993), N 4, 1227–1236Google Scholar
  5. 5.
    V. Chuckrow: Schottky groups with applications to Kleinian groups. Ann. Math.,88 (1968) 47–61Google Scholar
  6. 6.
    A. Douady, C. Earle: Conformally natural extension of homeomorphisms of the circle. Acta Math.157 (1986) 23–48Google Scholar
  7. 7.
    D. Gallo: Complex projective structures with prescribed monodromy. Bull. AMS,20 (1989) 31–34Google Scholar
  8. 8.
    D. Gallo, W. Goldman, M. Porter: Projective structures with monodromy in PSL (2, ℝ) (Preprint 1987)Google Scholar
  9. 9.
    W. Goldman: Topological components of spaces of representations. Invent. Math.93 (1988) 557–607Google Scholar
  10. 10.
    W. Goldman: Projective structures with Fuchsian holonomy. J. Diff. Geom.25 (1987) 297–326Google Scholar
  11. 11.
    L. Greenberg: Homomorphisms of triangle groups in PSL (2, ℂ). In: Riemann surfaces and related topics. Stony Brook, Ann. Math. Stud., vol.97, 1980Google Scholar
  12. 12.
    R. Gunning: Special coordinate coverings of Riemann Surface. Math. Ann.170, 67–86 (1967)Google Scholar
  13. 13.
    R. Gunning: On affine and complex projective structures. In: Riemann Surfaces and Related Topics. Stony Brook, Ann. Math. Stud., vol. 97, 1980Google Scholar
  14. 14.
    R. Gunning: Lectures on Vector bundles over Riemann Surfaces. Princeton University Press, 1967Google Scholar
  15. 15.
    D. Hejhal: Monodromy groups and linearly polymorphic functions. Acta Math.135 (1975) 1–55Google Scholar
  16. 16.
    B. Maskit: Kleinian groups, Springer Verlag, 1987Google Scholar
  17. 17.
    B. Maskit: On a class of Kleinian groups. Ann. Ac. Sci. Fenn., Ser. A,442 (1969) 1–8Google Scholar
  18. 18.
    S. Matsumoto: Foundations of flat conformal structures. Adv. Stud. Pure Appl. Math.20 (1992), Aspects of Low Dimensional Manifolds, p. 167–251Google Scholar
  19. 19.
    M. Narasimhan, C. Seshadri: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math.82 (1965) 540–567Google Scholar
  20. 20.
    W. Thurston: Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle (Preprint)Google Scholar
  21. 21.
    W. Thurston: Hyperbolic structures on 3-manifolds, I, Ann. Math.124 (1986), 203–246Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Michael Kapovich
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations