Inventiones mathematicae

, Volume 119, Issue 1, pp 1–36 | Cite as

The notion of norm and the representation theory of orthogonal groups

  • Freydoon Shahidi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Arthur: Unipotent automorphic representations: Global motivations. In: L. Clozel, J. S. Milne (eds.) Automorphic Forms, Shimura Varieties, and L-functions, vol. 1. (Perspect. Math.10, 1–75, Boston: 1990 Academic Press)Google Scholar
  2. [2]
    J. Arthur, L. Clozel: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (Ann. Math. Stud. vol. 120) Princeton, N.J.: Princeton University Press 1989Google Scholar
  3. [3]
    A. Borel: Automorphic L-functions, Proc. Symp. Pure Math., AMS, 33II, 27–61 (1979)Google Scholar
  4. [4]
    C. Bushnell, P. Kutzko: The Admissible Dual of GL(N) via Compact Open Subgroups. (Ann. Math. Stud. vol 129) Princeton, N.J.: Princeton University Press 1993Google Scholar
  5. [5]
    L. Clozel: Invariant harmonic analysis on the Schwartz space of a reductivep-adic group. In: W. Barker, P. Sally (eds) Harmonic Analysis on Reductive Groups, pp. 101–121. Progress in Mathematics. Boston Basel, Birkhäuser 1991Google Scholar
  6. [6]
    L. Clozel: Characters of non-connected reductivep-adic groups. Canad. J. Math.39 149–167, (1987)Google Scholar
  7. [7]
    Y. Flicker: On the symmetric square: orbital integrals. Math. Ann.279, 173–191 (1987)Google Scholar
  8. [8]
    S. Gelbart, I. Piatetski-Shapiro, S. Rallis: Explicit Construction of Automorphic L-functions. (Lect. Notes in Math, vol. 1254) Berlin Heidelberg New York: Springer 1987Google Scholar
  9. [9]
    D. Goldberg: Reducibility of induced representations for Sp(2n) and So(n), Am. J. Math. (to appear)Google Scholar
  10. [10]
    D. Goldberg: Some results on reducibility for unitary groups and local AsaiL-functions, J. Reine Angew. Math.448, 65–95 (1993)Google Scholar
  11. [11]
    D. Goldberg: Reducibility of generalized principal series representations for U(2, 2) via base change. Comp. Math.86, 245–264 (1993)Google Scholar
  12. [12]
    Harish-Chandra: Harmonic analysis on reductive p-adic groups. Proc. Symp. Pure Math. AMS,26, 167–192 (1974)Google Scholar
  13. [13]
    Harish-Chandra: Harmonic analysis on reductive p-adic groups. Notes by G. van Dijk. (Lect. Notes Math., vol. 162) Berlin Heidelberg New York: Springer 1970Google Scholar
  14. [14]
    R. Howe, A. Moy: Hecke algebra isomorphisms for GLn over a p-adic field, J. Algebra131, 388–424 (1990)Google Scholar
  15. [15]
    J. Igusa: Some results on p-adic complex powers. Amer. J. Math.106, 1013–1032 (1984)Google Scholar
  16. [16]
    D. Joyner: On twisted orbital integral identities for PGL(3) over a p-adic field. Canad. J. Math.42, 1098–1130 (1990)Google Scholar
  17. [17]
    A.W. Knapp, E.M. Stein: Interwining operators for semisimple groups II. Invent. Math.60, 9–84 (1984)Google Scholar
  18. [18]
    R. Kottwitz: Rational conjugacy classes in reductive groups. Duke Math. J.49, 785–806 (1982)Google Scholar
  19. [19]
    R. Kottwitz, D. Shelstad: Twisted endoscopy I: Definitions, norm mappings and transfers factors (preprint)Google Scholar
  20. [20]
    R. Kottwitz, D. Shelstad: Twisted endsocopy II: Basic global theory, preprintGoogle Scholar
  21. [21]
    R.P. Langlands: Les débuts d'une formule des traces stable. Publ. Math. Univ. Paris VII, vol 13, Paris 1983Google Scholar
  22. [22]
    R.P. Langlands: Some identities for orbital integrals attached toGL(3), manuscript.Google Scholar
  23. [23]
    R.P. Langlands, D. Shelstad: On the definition of transfer factors. Math. Ann.278, 219–271 (1987)Google Scholar
  24. [24]
    R.P. Langlands, D. Shelstad: Descent for transfer factors. In the Grothendieck Festschrift, vol. II, pp. 485–563. Boston Basel. Birkhäuser 1990Google Scholar
  25. [25]
    L. Morris: Tamely ramified intertwining algebras I, II, preprint.Google Scholar
  26. [26]
    G.I. Olšanskiî: Inertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra. Math. USSR-Sb.22, 217–255 (1974)Google Scholar
  27. [27]
    O.T. O'Meara: Introduction to Quadratic Forms. Berlin Göttingen Heildelberg New York: Springer/Academic Press 1963Google Scholar
  28. [28]
    I. Piatetski-Shapiro, S. Rallis: ε-factors of representations of classical groups. Proc. Nat. Acad. Sci. USA83, 4589–4593 (1986)Google Scholar
  29. [29]
    J. Rogawski: Automorphic Representations of Unitary Groups in Three Variables. (Ann. Math. Stud. vol. 123) Princeton, N.J.: Princeton University Press 1990Google Scholar
  30. [30]
    P.J. Sally, Jr., M. Tadić: Induced representations and classifications for GSP(2,F) and Sp(2, F), preprint.Google Scholar
  31. [31]
    M. Sato, T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J.65, 1–155 (1977)Google Scholar
  32. [32]
    F. Shahidi: Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J.66, 1–41 (1992)Google Scholar
  33. [33]
    F. Shahidi: A proof of Langlands' conjecture on Plancherel measures; Complementary series for p-adic groups. Ann. Math. 132, 273–330 (1990)Google Scholar
  34. [34]
    F. Shahidi: On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. Math.127, 547–584 (1988)Google Scholar
  35. [35]
    F. Shahidi: On multiplicativity of local factors, in Festschrift in honor of I.I. Piatetski-Shapiro; Part II. Israel Math Conf Proc3, 279–289 (1990)Google Scholar
  36. [36]
    F. Shahidi: On certainL-functions. Amer. J. Math.103, 297–356 (1981)Google Scholar
  37. [37]
    D. Shelstad:L-indistinguishability for real groups. Math. Ann.259, 385–430 (1982)Google Scholar
  38. [38]
    A. Silberger: Introduction to Harmonic Analysis of Reductive p-adic Groups. Math. Notes of Princeton University Press, Princeton,23, 1979Google Scholar
  39. [39]
    D. Soudry: Rankin-Selberg convolutions forSO 21+1 ×L n: Local theory. Mem. Am. Math. Soc. (to appear)Google Scholar
  40. [40]
    D. Soudry: On the archimedean theory of Rankin-Selberg convolutions forSO 21+1 ×GL n (Preprint)Google Scholar
  41. [41]
    R. Steinberg: Endomorphisms of algebraic groups. Mem. Am. Math. Soc.80 (1968)Google Scholar
  42. [42]
    M. Tadić: Representations of classical p-adic groups (Preprint)Google Scholar
  43. [43]
    M. Tadić: Notes on representations of non-archimedeanSL(n). Pacific J. Math.152 (1992) 375–396Google Scholar
  44. [44]
    J. Arthur: On some problems suggested by the trace formula. In: Lie Groups Representations II, Lecture Notes in Math, Vol. 1041, Springer, Berlin-Heidelberg-New York, 1983, pp. 1–49Google Scholar
  45. [45]
    R. Kottwitz: Stable trace formula, cuspidal tempered terms. Duke Math. J.51 (1984) 611–650Google Scholar
  46. [46]
    J.-P. Labesse, R.P. Langlands:L-indistinguishability forSL 2. Can. J. Math.31 (1979) 726–785Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Freydoon Shahidi
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations