Inventiones mathematicae

, Volume 104, Issue 1, pp 655–669

Un principe variationnel pour les empilements de cercles

  • Yves Colin de Verdière
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [AL] Ahlfors, L.: Lectures on quasi-conformal mappings. Van Nostrand 1982Google Scholar
  2. [AN] Andreev, E.M.. On convex polyhedra in Lobaĉeskiî spaces. Mat. USSR Sbornik10, 413–440 (1970)CrossRefGoogle Scholar
  3. [BE] Berge, C.: Graphes et hypergraphes. Dunod 1973Google Scholar
  4. [BN] Beardon, A.: The geometry of discrete groups. Berlin Heidelberg New York: Springer 1983CrossRefMATHGoogle Scholar
  5. [CH] Choquet, G.: Sur un type de transformation analytique... défini au moyen de fonctions harmoniques. Bull. Sci. Math.,69, 156–165 (1945)MathSciNetMATHGoogle Scholar
  6. [CV 1] Colin de Verdière, Y.: Empilements de cercles: convergence d'une méthode de points fixe. Forum Math.1, 395–402 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. [CV 2] Colin de Verdière, Y.: Déformations géodésiques des triangulations de surfaces, Prépublication de l'Institut Fourier n0 161 (1990)Google Scholar
  8. [FY] Fary, I.: On straight line representation of planar graphs. Acta Sci. Math. SzegedII, 229–233 (1948)MathSciNetMATHGoogle Scholar
  9. [OPS] Osgood, Phillips, Sarnak: Extremals of determinants of Laplacians. J. Funct. Anal.80, 148–212 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. [RS] Rodin, B., Sullivan, D.: The convergence ofcircle packings to the Riemann mapping. J. Diff. Geom.26, 349–360 (1987)MathSciNetMATHGoogle Scholar
  11. [SM] Schramm, O.: Existence and uniqueness of packings with specified combinatorics. Preprint UCSD (a paraitre, 1990)Google Scholar
  12. [ST] Stephenson, K.: Circle packings in the approximations of conformal mappings. Bull. AMS123, 407–415 (1990)MathSciNetCrossRefMATHGoogle Scholar
  13. [S-Y] Schoen, R., Yau, S.T.: On univalent harmonic maps between surfaces. Invent. Math.44, 265–278 (1978)MathSciNetCrossRefMATHGoogle Scholar
  14. [TH] Thurston, W.: The geometry and topology of three-manifolds. Princeton Notes, chap. 13, 1978Google Scholar
  15. [TO 1] Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. TheoryB 29, 244–271 (1980)MathSciNetCrossRefMATHGoogle Scholar
  16. [TO 2] Thomassen, C.: Plane representations of graphs. In: Progress in graph theory, pp. 43–69. Academic press 1984Google Scholar
  17. [TU] Tutte, W.: How to draw a graph. Proc. Lond. Math. Soc.13, 743–768 (1963)MathSciNetCrossRefMATHGoogle Scholar
  18. [TV] Troyanov, M.: Les surfaces euclidiennes à singularités coniques. Ens. Math.32, 79–94 (1986)MathSciNetMATHGoogle Scholar
  19. [ZH] Zheng,-Xu He: An estimate for hexagonal circle packings, J. Diff. Geom. (à paraître 1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Yves Colin de Verdière
    • 1
  1. 1.Laboratoire associé au CNRSInstitut FourierSaint Martin d'Hères CedexFrance

Personalised recommendations