Inventiones mathematicae

, Volume 104, Issue 1, pp 263–289 | Cite as

Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations

  • Fabrizio Catanese
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ara] Arakelov, S.J.: Families of algebraic curves with fixed degeneracies. Math. USSR, Izv.5, 1277–1302 (1971)MathSciNetCrossRefMATHGoogle Scholar
  2. [At] Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc., III. Scr.7, 414–452 (1957)MathSciNetCrossRefMATHGoogle Scholar
  3. [Be1] Beauville, A.: Surfaces algébriques complexes. Asterisque54 (1978)Google Scholar
  4. [Be2] Beauville, A.: Annullation duH 1 et systemes paracanoniques sur les surfaces. Crelle Jour.388, 149–157 (1988)MathSciNetMATHGoogle Scholar
  5. [Be3] Beauville, A.: L'inégalitép g≧2q-4 pour les surfaces de type général. Bull. Soc. Math. Fr.110, 344–346 (1982)MathSciNetGoogle Scholar
  6. [Bog] Bogomolov, F.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR, Izv.13, 499–555 (1979)CrossRefMATHGoogle Scholar
  7. [Bo] Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.42, 171–219 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. [BPV] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergeb. Math. Grenzgeb. 1984Google Scholar
  9. [Cas1] Castelnuovo, G.: Sulle superficie aventi il genere aritmetico negativo. Rend. Circ. Math. Palermo20, 55–60 (1905)CrossRefMATHGoogle Scholar
  10. [Cas2] Castelnuovo, G.: Sul numero dei moduli di una superficie irregolare. I, II, Rend. Acc. Lincei7, 3–7, 8–11 (1949)MathSciNetMATHGoogle Scholar
  11. [Ca1] Catanese, F.: On the moduli spaces of surfaces of general type. J. Differ. Geom.19, 483–515 (1984)MathSciNetMATHGoogle Scholar
  12. [Ca2] Catanese, F.: Moduli of surfaces of general type. In: Algebraic Geometry Open Problems. Proceedings Ravello 1982. (Lect. Notes Math., Vol. 997, pp. 90–112) Berlin, Heidelberg, New York: Springer 1983CrossRefGoogle Scholar
  13. [Ca3] Catanese, F.: Moduli of algebraic surfaces, In: Theory of Moduli. Proceedings C.I.M.E. 1985. (Lect. Notes Math., Vol. 1337, pp. 1–83). Berlin, Heidelberg, New York: Springer 1988CrossRefGoogle Scholar
  14. [C-C1] Catanese, F., Ciliberto, C.: Surfaces withp g=q=1. In: “Problems on surfaces and their classification”, Proc. Cortona 1988. Symp. Math.32, INDAM, Academic Press (to appear)Google Scholar
  15. [C-C2] Catanese, F., Ciliberto, C.: Symmetric products of elliptic curves and surfaces withp g=q=1. In: Proceedings of the Conf. “Projective Varieties”, Trieste 1989. (Lect. Notes Math.) Berlin, Heidelberg, New York: Springer (to appear)Google Scholar
  16. [D-F] De Franchis, M.: Sulle superficie algebriche le quali contengono un fascio irrazionale di curve. Rend. Circ. Mat. Palermo20, 49–54 (1905)CrossRefMATHGoogle Scholar
  17. [Des] Deschamps, M.: Reduction semi-stable. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 1–34 (1981)Google Scholar
  18. [Do] Donaldson, S.: La topologie différentièlle des surfaces complexes. C.R. Acad. Sci. Paris301, 317–320 (1985)MathSciNetMATHGoogle Scholar
  19. [En] Enriques, F.: Le superficie algebriche. Bologna: Zanichelli 1949MATHGoogle Scholar
  20. [F1] Flenner, H.: Über Deformationen Holomorpher Abbildungen. Osnabrücker Schriften zur Mathematik I-VII and 1–142 (1979)Google Scholar
  21. [Fos] Fossum, R.: Formes differentielles non fermees. In: Seminaire sur les pineaux de courbes de genre au moins deux. Asterisque86, 90–96 (1981)Google Scholar
  22. [Fu] Fujita, T.: On Kachler fibre spaces over curves. J. Math. Soc. Japan30, 779–794 (1978)MathSciNetCrossRefMATHGoogle Scholar
  23. [Ha] Hartshorne, R.: Algebraic geometry. G.T.M.52. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  24. [Ho1] Horikawa, E.: On deformation of holomorphic maps I. J. Math. Soc. Japan25, 372–396 (1973)MathSciNetCrossRefMATHGoogle Scholar
  25. [Ho2] Horikawa, E.: On defermation of holomorphic maps II, J. Math. Soc. Japan26, 647–667 (1974)MathSciNetCrossRefMATHGoogle Scholar
  26. [Ho3] Horikawa, E.: On deformation of holomorphic maps III. Math. Ann.222, 275–282 (1976)MathSciNetCrossRefMATHGoogle Scholar
  27. [G-L1] Green, M., Lazarsfeld, R.: Deformation theory, generic vanishing theorems and some conjectures of Enriques, Catanese and Beauville. Invent. Math.90, 389–407 (1987)MathSciNetCrossRefMATHGoogle Scholar
  28. [G-L2] Green, M., Lazarsfeld, R.: Higher obstructions to deforming cohomology groups. Talk at the Trieste Conference “Projective varieties”, June 1989 and paper in preparationGoogle Scholar
  29. [Il1-2] Illusie, L.: Complexe contangent et deformations I, II. (Lect. Notes Math., Vol. 239) 1971, Vol. 283, 1972, Berlin, Heidelberg, New York: SpringerCrossRefMATHGoogle Scholar
  30. [Il3] Illusie, L.: Complexe de De Rham-Witt et Cohomologie Cristalline. Ann. E.N.S. (4)12, 501–661 (1979)MathSciNetMATHGoogle Scholar
  31. [Kaw] Kawamata, Y.: Characterization of Abelian varieties. Comp. Math.43, 253–276 (1981)MathSciNetMATHGoogle Scholar
  32. [Ko] Kollar, J.: Higher direct images of dualizing sheaves. Ann. Math., II. Ser.123, 11–42 (1986)MathSciNetCrossRefMATHGoogle Scholar
  33. [La] Lang, W.: Quasi-elliptic surfaces in Charasteristic 3. Ann. E.N.S. (4)12, 473–500 (1979)Google Scholar
  34. [Me] Menegaux, R.: Un theoreme d'annulation en earacteristique positive. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 35–43 (1981)Google Scholar
  35. [Ny] Nygaard, N.: Closedness of regular 1-forms on algebraic surfaces. Ann. E.N.S. (4)12, 33–45 (1979)MathSciNetMATHGoogle Scholar
  36. [Pal] Palamodov, V.P.: Deformations of complex spaces. Usp. Mat. Nauk.31.3, 129–194 (1976)MathSciNetMATHGoogle Scholar
  37. [Pet] Peters, C.A.M.: Some remarks about Reider's article ‘On the infinitesimal Torelli theorem for certain irregular surfaces of general type’. Math. Ann.281, 315–324 (1988)MathSciNetCrossRefMATHGoogle Scholar
  38. [Ran1] Ran, Z.: On subvarieties of Abelian varieties. Invent. Math.62, 459–479 (1981)MathSciNetCrossRefMATHGoogle Scholar
  39. [Ran2] Ran, Z.: Deformations of maps. In: Algebraic Curves and Projective Geometry. Proceedings Trento 1988. (Lect. Notes Math., Vol. 1389, pp. 246–253) Berlin, Heidelberg, New York: Springer 1989CrossRefGoogle Scholar
  40. [Rei] Reider, I.: Bounds for the number of moduli for irregular varieties of general type. Manuscr. Math.60, 221–233 (1988)MathSciNetCrossRefMATHGoogle Scholar
  41. [Se] Severi, F.: Geometria dei sistemi algebrici sopra una superficie e sopra una varietá algebrica, Vol. II and III. Roma: Cremonese 1958MATHGoogle Scholar
  42. [Sh] Shafarevich, I.P.: Algebraic surfaces. Moskva: Steklov Institute Publ. 1965MATHGoogle Scholar
  43. [Siu] Siu, Y.T.: Strong rigidity for Kaehler manifolds and the construction of bounded holomorphic functions. In: Howe, R. (ed.) Discrete groups and Analysis. Birkhäuser 124–151 (1987)Google Scholar
  44. [Sz] Szpiro, L.: Proprietes numeriques du faisceau dualisant relatif. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 44–78 (1981)Google Scholar
  45. [Ueno] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. (Lect. Notes Math., Vol. 439, Berlin, Heidelberg, New York: Springer 1975MATHGoogle Scholar
  46. [Y] Yau, S.T.: On the Ricci-curvature of a complex Kaehler manifold and the complex Monge-Ampere equation. Commun. Pure Appl. Math.31, 339–411 (1978)CrossRefMATHGoogle Scholar

References for the Appendix

  1. [Be2] Beauville, A.: Annullation deH 1 et systemes paracanoniques sur les surfaces. Crelle Jour.388, 149–157 (1988)MathSciNetMATHGoogle Scholar
  2. [Siu] Siu, Y.T.: Strong rigidity for Kaehler manifolds and the construction of bounded holomorphic functions. In: Howe, R. (ed.) Discrete groups and Analysis. Birkhäuser 124–151 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Fabrizio Catanese
    • 1
  1. 1.Dipartimento di Matematica della Università di PisaPisaItalia

Personalised recommendations