Inventiones mathematicae

, Volume 113, Issue 1, pp 147–162 | Cite as

The dunkl transform

  • M. F. E. de Jeu


We obtain estimates for the eigenfunctions of Dunkl's operators and solve the spectral problem for these operators.


Spectral Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D1] Dunkl, C.F.: Reflection groups and orthogonal polyomials on the sphere. Math. Z.197, 33–60 (1988)Google Scholar
  2. [D2] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc.311, 167–183 (1989)Google Scholar
  3. [D3] Dunkl, C.F.: Operators commuting with Coxeter groups actions on polynomials. In: Stanton, D. (ed.). Invariant Theory and Tableaux, pp. 107–117. Berlin Heidelberg New York: Springer, 1990Google Scholar
  4. [D4] Dunkl, C.F.: Integral kernels with reflection group invariance. Can J. Math.43, 1213–1227 (1991)Google Scholar
  5. [D5] Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Proceedings of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications at AMS meeting in Tampa, Fa March 22–23. (Contemp. Math.138 (1992) Providence, RI: Am. Math. Soc.Google Scholar
  6. [Hec] Heckman, G.J.: A remark on the Dunkl differential-difference operators. In: Proceedings of the Bowdoin conference on reductive groups, 1989.Google Scholar
  7. [Hel] Helgason, S.: Groups and Geometric Analysis. New York London: Academic Press, 1984Google Scholar
  8. [M] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. Anal.13, 988–1007 (1982)Google Scholar
  9. [O] Opdam, E.M.: Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compos. Math.85, 333–373 (1993)Google Scholar
  10. [R] Rudin, W.: Functional analysis. New Delhi: Tata McGraw-Hill 1973Google Scholar
  11. [S] Sneddon, I.N.: Fourier Transforms. Toronto, London New York: McGraw-Hill 1951Google Scholar
  12. [T] Treves, F.: Topological vector spaces, distributions and kernels. New York London: Academic Press, 1967Google Scholar
  13. [Hec] Heckman, G.J.: A remark on the Dunkl differential-difference operators. In: Barker, W., Sally, P. (eds.) Harmonic analysis on reductive groups (Progress in Mathematics101). Boston Basel Berlin: Birkhäuser, 1991Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. F. E. de Jeu
    • 1
  1. 1.Department of mathematicsUniversity of LeidenLeidenThe Netherlands

Personalised recommendations