Inventiones mathematicae

, Volume 113, Issue 1, pp 85–102

A lefschetz decomposition for chow motives of abelian schemes

  • Klaus Künnemann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1] Beauville, A.: Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne. In Raynaud, M., Shioda, T. (eds.) Algebraic Geometry, Tokyo/Kyoto 1982 (Lect. Notes Math., vol. 1016, pp. 238–260) Berlin Heidelberg New York: Springer 1983Google Scholar
  2. [B2] beauville, A.: Sur l'anneau de Chow d'une variété abélienne. Math. Ann.273, 647–651 (1986)Google Scholar
  3. [Be] Beilinson, A.A.: Height pairings between algebraic cycles. In: Manin, Yu. I. (ed.) K-theory, Arithmetic and Geometry, Moscow 1984–86 (Lect. Notes Math., vol. 1289, pp. 1–25), Berlin Heidelberg New York: Springer 1987 and (Contemp. Math., vol.67, pp. 1–24, Providence, RI: Am. Math. Soc. 1987Google Scholar
  4. [D-M] Deninger, C., Murre, J.: Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math.422, 201–219 (1991)Google Scholar
  5. [G] Grothendieck, A.: Standard conjectures on algebraic cycles. In: Abhyankhar, S.S. et al (eds.) Algebraic Geometry, Bombay 1968, pp. 193–199. Oxford: Oxford University Press 1969Google Scholar
  6. [Km] Kleiman, S.L.: Algebraic cycles and the Weil conjectures. In: Grothendieck, A., Kuiper N.H. (eds.) Dix exposés sur la cohomologie des schemas, pp. 359–386. Amsterdam: North-Holland 1968Google Scholar
  7. [K1] Künnemann, K.: On the Chow motive of an abelian scheme. In: Jannsen, U., Kleiman, S.L., Serre, J-P (eds.) Proceedings of the conference on motives, Seattle 1991. (Proc. Symp. Pure Math.) Providence, RI: Am. Math. Soc. (to appear)Google Scholar
  8. [K2] Künnemann, K.: Chow Motive von abelschen Schemata und die Fouriertransformation. Dissertation Münster 1992. Schriftenr. Math. Inst. Graduiertenkoll. Univ. Münster, 3. Ser.6 (1992)Google Scholar
  9. [L1] Lieberman, D.I.: Higher Picard varieties. Am. J. Math.90 1165–1199 (1968)Google Scholar
  10. [L2] Lieberman, D.I.: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. Am. J. Math.90, 366–374 (1968)Google Scholar
  11. [Mm] Mumford, D.: Geometric invariant theory. Berlin Heidelberg New York: Springer 1965Google Scholar
  12. [Mr] Murre, J.: On a conjectural filtration on the Chow groups of an algebraic variety. (Preprint 1992); Indagationes Math. (to appear)Google Scholar
  13. [Sh] Scholl, A.J.: Classical motives. In: Jannsen, U., Kleiman, S. L., SerrE J-P. (eds.) Proceedings of the conference on motives, Seattle 1991. (Proc. Symp. Pure Math.) Providence. RI: Am. Math. Soc. (to appear)Google Scholar
  14. [So] Soulé C.: Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann.268, 317–345 (1984)Google Scholar
  15. [W] Weil, A.: Introduction á l'étude des variétés kähleriennes, Paris: Hermann 1958Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Klaus Künnemann
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Institut des Hautes Études ScientifiquesBuressur-YvetteFrance

Personalised recommendations