Foundations of Physics

, Volume 23, Issue 11, pp 1521–1533

Vector-valued rational forms

  • D. E. Roberts
Part III. Invited Papers Dedicated To David Hestenes


We define rational Hermite interpolants to vector-valued functions and show that, in the context of Clifford algebras, the numerator and denominator polynomials belong to a complex extension of the Lipschitz group. We also discuss the problem of constructing an algebraic representation for the generalized inverse of a vector, which is at the heart of the usual development of vector rational approximation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Wynn, “Acceleration techniques for iterative vector and matrix problems,”Math. Comp. 16, 301–322 (1962).Google Scholar
  2. 2.
    D. A. Smith, W. F. Ford and A. Sidi, “Extrapolation methods for vector sequences,”SIAM Rev. 29, 199–233 (1987).Google Scholar
  3. 3.
    D. E. Roberts and P. R. Graves-Morris, “The application of generalised inverse rational intepolants in the modal analysis of vibrating structures I,” inAlgorithms for Approximation, J. C. Mason and M. G. Cox, eds. (Oxford University Press, Oxford, 1987).Google Scholar
  4. 4.
    P. R. Graves-Morris, “Solution of integral equations using generalised inverse, function-valued Padé approximants I,”J. Comput. Appl. Math. 32, 117–134 (1990).Google Scholar
  5. 5.
    P. R. Graves-Morris and R. Thukral, “Solution of integral equations using function-valued Padé approximants II,”Numerical Algorithms 3, 223–234 (1992).Google Scholar
  6. 6.
    J. B. McLeod, “A note on the ɛ-algorithm,”Computing 7, 17–24 (1971).Google Scholar
  7. 7.
    P. Wynn, “Vector continued factions,”Linear Algebra Appl. 1, 357–395 (1968).Google Scholar
  8. 8.
    P. R. Graves-Morris, “Vector-valued rational interpolants I,”Numer. Math. 42, 331–348 (1983).Google Scholar
  9. 9.
    P. R. Graves-Morris and C. D. Jenkins, “Generalised inverse vector-valued rational interpolation,”Padé Approximation and Its Applications, Bad Honnef, 1983, H. Werner and H. J. Bünger, eds. (Springer, Berlin, 1984), pp. 144–156.Google Scholar
  10. 10.
    P. R. Graves-Morris and C. D. Jenkins, “Vector-valued rational interpolants III,”Constr. Approx. 2, 263–289 (1986).Google Scholar
  11. 11.
    D. E. Roberts, “Clifford algebras and vector-valued rational forms I,”Proc. R. Soc. London A. 431, 285–300 (1990).Google Scholar
  12. 12.
    D. E. Roberts, “Clifford algebras and vector-valued rational forms II,”Numerical Algorithms 3, 371–382 (1992).Google Scholar
  13. 13.
    P. Lounesto, “Clifford algebras and Hestenes spinors,”Found. Phys. 23, 1203–1237 (1993).Google Scholar
  14. 14.
    G. A. Baker, Jr., and P. R. Graves-Morris,Padé Approximants (Encyclopaedia of Mathematics and Its Applications13 and14) (Addison-Wesley, Reading, Massachusetts, 1981).Google Scholar
  15. 15.
    P. R. Graves-Morris and D. E. Roberts, “From matrix to vector Padé approximants,”J. Comput. Appl. Math., in press.Google Scholar
  16. 16.
    L. V. Ahlfors and P. Lounesto, “Some remarks on Clifford algebras,”Complex Variables 12, 201–209 (1989).Google Scholar
  17. 17.
    R. D. Schafer,An Introduction to Non-Associative Algebras (Academic, New York, 1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • D. E. Roberts
    • 1
  1. 1.Mathematics DepartmentNapier UniversityEdinburghUnited Kingdom

Personalised recommendations