Modules over regular algebras of dimension 3
Article
- 636 Downloads
- 129 Citations
Keywords
Regular Algebra
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [AmSm] Amitsur, S.A., Small, L.W.: Prime ideals in P.I. rings. J. Algebra62, 358–383 (1980)Google Scholar
- [ArSch] Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math.66, 171–216 (1987)Google Scholar
- [ATV] Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. The Grothendieck Festschrift, vol. 1, pp. 33–85, Boston Basel Stuttgart: Birkhäuser 1990Google Scholar
- [AV] Artin, M., Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra133, 249–271 (1990)Google Scholar
- [Bj] Björk, J.-E.: The Auslander condition on noetherian rings. Séminaire Dubreil-Malliavin 1987–8. Lect. Notes Math., vol. 1404, pp. 137–173, Berlin Heidelberg New York: Springer 1990Google Scholar
- [BLR] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Berlin Heidelberg New York: Springer 1990Google Scholar
- [BS] Borevitch, Z.I., Shafarevitch, I.R.: Number theory. New York: Academic Press 1966Google Scholar
- [EG] Evans, E.G., Griffith, P.: Syzygies. Lond. Math. Soc. Lect. Note Ser. vol. 106, Cambridge: Cambridge University Press 1986Google Scholar
- [KL] Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension. Res. Notes Math. vol. 116, Boston: Pitman 1985Google Scholar
- [NV] Nastacescu, C., Van Oystaeyen, F.: Graded ring theory, p. 16. Amsterdam: North Holland 1982Google Scholar
- [OF] Odeskii, A.B., Feigin, B.L.: Sklyanin algebras associated to elliptic curves. (Manuscript)Google Scholar
- [Ra] Ramras, R.: Maximal orders over regular rings of dimension 2. Trans. Am. Math. Soc.142, 457–474 (1969)Google Scholar
- [Re] Revoy, M.P.: Algèbres de Weyl en charactéristique p. C.R. Acad. Sci. Sér.A276, 225–227 (1973)Google Scholar
- [Ro] Rowen, L.: Polynomial identities in ring theory. New York London: Academic Press 1980Google Scholar
- [Sn] Snider, R.L.: Noncommutative regular local rings of dimension 3. Proc. Am. Math. Soc.104, 49–50 (1988)Google Scholar
- [SSW] Small, L.W., Stafford, J.T., Warfield, R.B.: Affine algebras of Gelfand-Kirillov dimension one are PI. Math. Proc. Camb. Philos. Soc.97, 407–414 (1985)Google Scholar
- [Staf] Stafford, J.T.: Noetherian full quotient rings. Proc. Lond. Math. Soc.44, 385–404 (1982)Google Scholar
- [Stan] Stanley, R.P.: Generating functions. In: Studies in Combinatorics. MAA Stud. Math., vol. 17, pp. 100–141, Washington: MAA, Inc. 1978Google Scholar
- [VdB] Van den Bergh, M.: Regular algebras of dimension 3. Séminaire Dubreil-Malliavin 1986. Lect. Notes Math., vol. 1296, pp. 228–234, Berlin Heidelberg New York: Springer 1987Google Scholar
Copyright information
© Springer-Verlag 1991