Advertisement

Inventiones mathematicae

, Volume 106, Issue 1, pp 27–60 | Cite as

Complete Kähler manifolds with zero Ricci curvature II

  • Gang Tian
  • Shing Tung Yau
Article

Keywords

Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba] Baily, W.: On the imbedding ofV-manifolds in projective space. Am. J. Math.79, 403–430 (1957)Google Scholar
  2. [BK] Bando, S., Kobayashi, R.: Complete Ricci-flat Kähler metrics. (Preprint)Google Scholar
  3. [CY1] Cheng, S.Y., Yau, S.T.: On the existence of complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation. Commun. Pure Appl. Math.33, 507–544 (1980)Google Scholar
  4. [CY2] Cheng, S.Y., Yau, S.T.: Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of SU (2, 1). Contemp. Math.49, 31–43 (1986)Google Scholar
  5. [Fed] Federer, H.: Geometry Measure Theory. (Grundlehren Math. Wiss., Bd. 153) Berlin Heidelberg New York: Springer 1969Google Scholar
  6. [Fef] Fefferman, C.: Monge-Ampère equations, the Berman kernel, and geometry of pseudoconvex domains. Ann. Math.103, 395–416 (1976)Google Scholar
  7. [Gr] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math., Inst. Hautes Étud. Sci.53 (1981)Google Scholar
  8. [GT] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977Google Scholar
  9. [Ko] Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math.74, 570–574 (1961)Google Scholar
  10. [Sh] Shiffman, B.: Vanishing theorems on complex manifolds. (Prog. Math., vol. 56) Basel Boston Stuttgart: Birkhaüser 1985Google Scholar
  11. [Si] Simon, L.: Lectures on geometric measure theory. Proc. Cent. Math. Anal. Aust. Natl. Univ.3 (1983)Google Scholar
  12. [T1] Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with C1(M)>0. Invent. Math.89, 225–246 (1987)Google Scholar
  13. [T2] Tian, G.: On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math101, 101–172 (1990)Google Scholar
  14. [TY1] Tian, G., Yau, S.T.: Complete Kähler manifolds with zero Ricci curvature. 1. J. Am. Math. Soc.3, 579–610 (1990)Google Scholar
  15. [TY2] Tian, G., Yau, S.T.: Kähler-Einstein metrics on complex surfaces with C1>0. Commun. Math. Phys.112, 175–203 (1987)Google Scholar
  16. [TY3] Tian, G., Yau, S.T.: (Preprint)Google Scholar
  17. [Y1] Yau, S.T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. Éc. Norm. Supér., IV. Sér.8, 487–507 (1975)Google Scholar
  18. [Y2] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*. Commun. Pure Appl. Math.31, 339–411 (1978)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Gang Tian
    • 1
  • Shing Tung Yau
    • 2
  1. 1.Institute for Advanced StudySchool of MathematicsPrincetonUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations