Advertisement

Journal of Neural Transmission

, Volume 73, Issue 2, pp 129–134 | Cite as

Gabapentin augments whole blood serotonin in healthy young men

  • Marie Luise Rao
  • P. Clarenbach
  • M. Vahlensieck
  • S. Krätzschmar
Original Papers

Summary

It has been previously demonstrated that gabapentin, a gamma-amino butyric acid analogue, inhibits monoaminergic neurotransmitter release from rabbit caudate nucleus slices and from rat cortex. In humans this drug has been shown to have anti-epileptogenic activity. Serotonin may act as an inhibitory neurotransmitter and its interaction with blood platelets is thought to reflect its central actions. We investigated sleep stages, whole blood serotonin levels, and serum melatonin in healthy men after the administration of gabapentin. With increasing serum gabapentin levels six healthy subjects showed an increase in sleep stages 3 and 4 and in whole blood serotonin (P<0.05). Serum melatonin levels were not influenced.

On account of these results we speculate that gabapentin modulates the release of serotonin from blood platelets. The increase in peripheral serotonin points paradigmatically to an increase in the bioavailability of serotonin which may account for the increase in sleep stages 3 and 4.

Keywords

Gabapentin gaba-analogue sleep pattern human whole blood serotonin level nocturnal serum melatonin profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen MG, Young FG, Cohen DJ, Schlicht KR, Patel N (1981) Liquid-chromatographic determination of serotonin and tryptophan in whole blood and plasma. Clin Chem 27: 775–776Google Scholar
  2. Bartoszyk GD (1978) Gabapentin and convulsions provoked by excitatory amino acids. Naunyn Schmiedebergs Arch Pharmacol 324: R24Google Scholar
  3. Birkeland AJ (1982) Plasma melatonin levels and nocturnal transitions between sleep and wakefulness. Neuroendocrinology 34: 126–130Google Scholar
  4. Brown GM, Grota LJ, Pulido O, Burns TG, Niles LP, Snieckus V (1983) Application of immunologic techniques to the study of pineal indolalkylamines. In: Reiter R (ed) Pineal research reviews. A Liss, New York, pp 207–246Google Scholar
  5. Carlsson A (1976) The contribution of drug research to investigating the nature of endogenous depression. Pharmacopsychiatry 9: 2–10Google Scholar
  6. Clarenbach P, Birmanns B, Jaursch-Hancke C (1986a) The effect of ritanserin on sleep and hormones in man. In: Koella W, Obal F, Schulz H, Visser P (eds) Sleep research. Karger, Basel, in pressGoogle Scholar
  7. Clarenbach P, Krätzschmar S, Rao ML (1986b) Effects of a GABA-analogue on sleep, serotonin and hormones in man. Proc 8th Eur Congr Sleep Res, Szeged, Hungary, Sept 1–5, Abstract No 64Google Scholar
  8. Caudill WL, Houck GP, Wightman RM (1982) Determination of gamma-aminobutyric acid by liquid chromatography with electrochemical detection. J Chromatogr 227: 331–336Google Scholar
  9. Cramer H, Rudolph J, Consbruch U, Kendel K (1974) On the effects of melatonin on sleep and behaviour in man. Adv Biochem Psychopharmacol 11: 187–191Google Scholar
  10. Geeraerts F, Schimpfessel L, Crokaert R (1974) A simple routine method to preserve and determine blood serotonin. Experientia 30: 837–838Google Scholar
  11. Hengy H, Kölle EU (1985) Determination of gabapentin in plasma and urine by highperformance liquid chromatography and pre-column labelling for ultraviolet detection. J Chromatogr 341: 473–478Google Scholar
  12. Jouvet M (1969) Biogenic amines and the states of sleep. Science 163: 32–41Google Scholar
  13. Rao ML, Fels K (1987) Beeinflussen Tryptophan und Serotonin beim Menschen die Melatonin-Ausschüttung und damit die Funktion des “Regulators der Regulatoren” (Zirbeldrüse); In: Kielholz P, Müller-Oerlinghausen B (eds) Advances in pharmacotherapy, vol 3. Karger, Basel, pp 87–99Google Scholar
  14. Rao ML, Mager T (1987) Influence of the pineal gland on pituitary function in humans. Basal serum values of pituitary hormones and catecholamines in relation to melatonin. Psychoneuroendocrinology 12: 141–147Google Scholar
  15. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. NIH Publication 204, US Government Printing Office, Washington DCGoogle Scholar
  16. Reimann W (1983) Inhibition by GABA, baclofen and gabapentin of dopamine release from rabbit caudate nucleus: are there common or different sites of action? Eur J Pharmacol 94: 341–344Google Scholar
  17. Schlicker E, Reimann W, Göthert M (1985) Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Drug Res 35: 1347–1349Google Scholar
  18. Sizonenko PC, Moore DC, Paunier L, Baumanoir A, Nahory A (1979) Melatonin secretion in relation to sleep in epileptics. Prog Brain Res 25: 549–551Google Scholar
  19. Sneddon JM (1973) Blood platelets as a model for monoamine-containing neurons. Prog Neurobiol 1: 153–198Google Scholar
  20. van Praag HM (1977) Significance of biochemical parameters in the diagnosis, treatments, and prevention of depressive disorders. Biol Psychiatry 12: 101–131Google Scholar

Copyright information

© Springer Verlag 1988

Authors and Affiliations

  • Marie Luise Rao
    • 1
  • P. Clarenbach
    • 2
  • M. Vahlensieck
    • 1
  • S. Krätzschmar
    • 2
  1. 1.Department of Psychiatry, Nervenklinik und PoliklinikUniversität BonnBonnGermany
  2. 2.Department of Neurology, Nervenklinik und PoliklinikUniversität BonnBonnGermany

Personalised recommendations