Journal of Neural Transmission

, Volume 67, Issue 3–4, pp 241–266 | Cite as

On central effects of serotonin re-uptake inhibitors: Quantitative EEG and psychometric studies with sertraline and zimelidine

  • B. Saletu
  • J. Grünberger
  • L. Linzmayer


In a double-blind placebo-controlled cross-over study the encephalotropic and psychotropic properties of sertraline — a new potent and highly selective inhibitor of synaptosomal serotonin uptake — were studied along with blood levels of the parent drug and main metabolite in ten normal healthy volunteers. They received randomized at weekly intervals oral single doses of placebo, 100, 200 and 400 mg setraline and 100 mg zimelidine as reference drug. Blood sampling, EEG recordings, psychometric tests and evaluation of pulse, blood pressure and side-effects were carried out at the hours 0, 2, 4, 6, and 8. Blood level investigations demonstrated that sertraline is slowly absorbed with dose-dependent blood concentrations peaking in the 4th to 6th hour and remaining high thereafter, while the main metabolite, CP-53261 exhibited an even slower rise in plasma concentration up to the 8th hour. Computer-assisted spectral analysis of the EEG demonstrated slight effects of 100 mg zimelidine and 100 mg sertraline on human brain function, but moderate to marked effects after 200 and 400 mg sertraline as compared with placebo. Changes after 100 mg sertraline and the reference compound resembled the pharmaco-EEG profiles of antidepressants of the desipramine type and were indicative of some vigilance-improving properties while higher doses of sertraline induced alterations reminiscent of those after antidepressants of the imipramine type, thereby reflecting vigilance changes of the dissociative type. This neurophysiological conclusion was supported by the psychometric and psychophysiological data showing partly after 100 mg sertraline and zimelidine an improvement in psychometric performance, while 200 and 400 mg sertraline induced a deterioration of noopsyche and thymopsyche of the normal volunteers. Psychophysiological variables exhibited a dose-dependent change in CNS activation and a widening of the pupillary size. Time-efficacy calculations based on pharmacodynamic changes demonstrated maximal encephalotropic effects after 100 mg zimelidine in the 2nd to 4th hour, and after setraline in the 4th to the 6th hour, which is in agreement with the blood level data. Pulse, systolic and diastolic blood pressure showed no clinically relevant findings. Side-effects were non-existent to minimal after 100 mg zimelidine and sertraline, but marked after 200 and 400 mg sertraline characterized by nausea, vomiting, diarrhea, giddiness, restlessness, tremor and trismus.

Key words

Antidepressants serotonin re-uptake blocker sertraline zimelidine pharmacodynamics pharmaco-EEG psychometry encephalotropic effects psychotropic effects classification human pharmacology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian GK, Wang RY (1978) Physiology and pharmacology of central serotonergic neurons. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 171–183Google Scholar
  2. Asberg M, Träskman L, Thoren P (1976) 5HIAA in the cerebrospinal fluid: A biochemical suicide predictor? Arch Gen Psychiat 33: 1193–1197Google Scholar
  3. Ashcroft GW, Crawford TBB, Eccleston D, Sharman DF, MacDougall EJ, Stanton JB, Binno JF (1966) 5-hydroxyindole compounds in cerebrospinal fluid of patients with psychiatric or neurological disease. Lancet ii: 1049Google Scholar
  4. Bánki CM, Molnár G, Fekete G (1981) Correlation of individual symptoms and other clinical variables with cerebrospinal fluid amine metabolites and tryptophan in depression. Arch Psychiat Nervenkrankh 229: 345Google Scholar
  5. Birkmayer W, Riederer P (1975) Biochemical postmortem findings in depressed patients. J Neural Transm 37: 95–109Google Scholar
  6. Bourne HR, Bunney Jr. WE, Colburn RW, Davis JM, Davis JN, Shaw DN, Coppen AJ (1968) Noradrenalin, 5-hydroxytryptamine and 5HIAA in midbrains of suicidal patients. Lancet ii: 805Google Scholar
  7. Claghorn J, Gershon S, Goldstein BJ, Behrnetz S, Bush DF, Huitfeldt B (1983) A double-blind evaluation of zimelidine in comparison to placebo and amitriptyline in patients with major depressive disorder. Prog Neuro-Psychopharmacol 7: 367–382Google Scholar
  8. Coppen A, Wood K (1978) Tryptophan and depressive illness. Psychol Med 8: 49Google Scholar
  9. Coppen A, Prange AJ, Whybrow PC, Noguera R (1972) Abnormalities of indoleamines in affective disorders. Arch Gen Psychiat 26: 474Google Scholar
  10. Coppen A, Rao VAR, Swade C, Wood K (1979) Zimelidine: A therapeutic and pharmnacokinetic study in depression. Psychopharmacology 63: 199–202Google Scholar
  11. Dencker SJ, Malm M, Roos BE, Werdinius B (1966) Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. J Neurochem 13: 1545Google Scholar
  12. Doogan DP (1980) Fluvoxamine as an antidepressant drug. Neurpharmacol 19: 1215–1216Google Scholar
  13. Farkas T, Dunner DL, Fieve RR (1976) L-tryptophan in depression. Biolog Psychiat 11: 295Google Scholar
  14. Feighner MD, John P (1983) The new generation of antidepressants. J Clin Psychiat 44: 5Google Scholar
  15. Feldmann HS, Denber HCB (1982) Long-term study of fluvoxamine- a new rapid-acting antidepressant. Int Pharmacopsychiat 17: 114–122Google Scholar
  16. Fink M (1969) EEG and human psychopharmacology. Ann Rev Pharmacol 9: 241–258Google Scholar
  17. Grünberger J (1977) Psychodiagnostik des Alkoholkranken. Methodischer Beitrag zur Bestimmung der Organizität in der Psychiatrie. Maudrich, WienGoogle Scholar
  18. Grünberger J, Saletu B (1980) Determination of pharmacodynamics of psychotropic drugs by psychometric analysis. Prog Neuro-Psychopharmacol 4: 417–434Google Scholar
  19. Grünberger J, Linzmayer L, Saletu B (1984) Klinische Psychodiagnostik mit Hilfe psychophysiologischer Verfahren. Wien Med Wschr 134: 29–35Google Scholar
  20. Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. G. Fischer, Stuttgart New York, pp 249–351Google Scholar
  21. Itil TM (1974) Quantitative pharmaco-electroencephalography. In: Itil TM (ed) Psychotropic drugs and the human EEG. Karger, Basel, pp 43–75Google Scholar
  22. Koe BK, Weissman A, Welch WM, Browne RG (1983) Sertraline, 1S, 4 S-N-methyl-4-(3,4-dichlorphenyl)-1,2,3,4-tetrahydro-1-naphtyl-amine, a new uptake inhibitor with selectivity for sertonin. J Pharmacol Exp Ther 226: 686–700Google Scholar
  23. Lemberger L (1976) The effect of lilly compound 94939, a potential antidepressant, on biogenic amine uptake in man. Br J Clin Pharmacol 3: 215–218Google Scholar
  24. Lloyd KG, Farley IJ, Deck JHN, Hornykiewicz O (1974) Serotonin and 5-hydroxyindoleacetic acid in descrete areas of the brainstem of suicide victims and control patients. Adv Biochem Psychopharmacol 11: 387–397Google Scholar
  25. Matousek M, Hjalmarson A, Koch J, Petersen I (1984) The use of the EEG for assessment of vigilance changes caused by betablockers. Neuropsychobiology 12: 55–59Google Scholar
  26. Montgomery SA, Montgomery DB, McAuley R, Rani SJ, Roy D (1982) Profile of antidepressant action of zimelidine and norzimelidine compared with amitriptyline. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: clinical practice. Raven Press, New York, pp 35–42Google Scholar
  27. Murphy DL, Baker M, Goodwin FK, Miller H, Kotin J, Bunmney Jr. WE (1974) L-tryptophan in affective disorders: indoleamine changes and differential clinical effects. Psychopharmacologia 34: 11Google Scholar
  28. Oreland L, Wiberg A, Asberg M, Traskman L, Sjostrand L, Thoren P, Bertilsson L, Tybring G (1981) Platelet MAO activity and monoamine metabolites in cerebrospinal fluid in depressed and suicidal patients and in healthy controls. Psychiat Res 4: 21Google Scholar
  29. Osgood CE, Suci GJ, Tannenbaum PH (1975) The measurement of meaning. University Press, UrbanaGoogle Scholar
  30. Pfizer (1982) Central research: sertraline (CP-51, 974) — investigators reference manual. Sandwich, EnglandGoogle Scholar
  31. Pujol JF, Keane P, McRae A, Lewis BD, Renaud B (1978) Biochemical evidence for serotonergic control of the locus soeruleus. In: Garattini S, Pujol JF, Samanin R (eds) Interactions between putative neurotransmitters in the brain. Raven Press, New York, pp 401–410Google Scholar
  32. Riley GJ, Shaw DM (1976) Total and non-bound tryptophan in unipolar illness. Lancet ii: 1249Google Scholar
  33. Saito M, Kita S, Kagono Y (1982) The orientation of psychotropic drug properties based on the induced changes in electroencephalogram. Studies on zimelidine and sulpiride. In: Herrmann WM (ed) EEG in drug research. G. Fischer, Stuttgart New York, pp 51–74Google Scholar
  34. Saletu B (1976) Psychopharmaka, Gehirntätigkeit und Schlaf. Karger, BaselGoogle Scholar
  35. Saletu B (1982 a) Pharmaco-EEG profiles of typical and atypical antidepressants. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: clinical practice. Raven Press, New York, pp 257–268Google Scholar
  36. Saletu B (1981) Application of quantitative EEG in measuring encephalotropic and pharmacodynamic properties of antihypoxidotic/nootropic drugs. In: Scientific International Research (ed) Drugs and methods in C.V.D. Pergamon Press, OxfordGoogle Scholar
  37. Saletu B, Schjerve M, Grünberger J, Schanda H, Arnold OH (1977) Fluvoxamine — A new serotonin re-uptake inhibitor: First clinical and psychometric experiences in depressed patients. J Neural Transm 41: 17–36Google Scholar
  38. Saletu B, Grünberger J, Rajna P, Karobath M (1980) Clovoxamine and fluvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: Quantitative EEG, psychometric and pharmacokinetic studies in man. J Neural Transm 49: 63–86Google Scholar
  39. Saletu B, Grünberger J (1985) Classification and determination of cerebral biovailability of fluoxetine: Pharmacokinetic, pharmaco-EEG, and psychometric analyses. J Clin PsychiatGoogle Scholar
  40. Schmid-Burgk W, Kim JS, Lischewski R, Raßmann W (1981) Levels of total and free tryptophan in the plasma of endogenous and neurotic depressive. Arch Psychiat Nervenkr 231: 35Google Scholar
  41. Shaw DM (1977) The practical management of affective disorders. Br J Psychiatry 130: 432Google Scholar
  42. Shaw D, Campus F, Ecclestone E (1967) 5-Hydroxytryptamine in the hindbrain of depressive suicides. Brit J Psychiat 113: 1407Google Scholar
  43. Spiegel R, Aebi H-J (1981) Psychopharmakologie. W Kohlhammer, Stuttgart Berlin Köln MainzGoogle Scholar
  44. Zerssen VC, Koeller DM, Rey ER (1970) Die Befindlichkeitsskala (B-S) — ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen. Arzneim-Forsch 20: 915–918Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • B. Saletu
    • 1
  • J. Grünberger
    • 1
  • L. Linzmayer
    • 1
  1. 1.Department of PharmacopsychiatryPsychiatric University Clinic of ViennaAustria

Personalised recommendations