Microchimica Acta

, Volume 127, Issue 1–2, pp 19–39 | Cite as

Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science

  • Won-Yong Lee
Fundamental Review

Abstract

Ru(bpy)32+ electrogenerated chemiluminescence (CL) has rapidly gained importance as a sensitive and selective detection method in analytical science. The Ru(bpy)32+ ECL is observed when Ru(bpy)33+ reacts with Ru(bpy)3+ and yields an excited state Ru(bpy)32+*. ECL emission can also be obtained when a variety of oxidants and reductants react with the reduced or oxidized forms of Ru(bpy)32+. Either the reductant or the oxidant can be treated as an analyte. The Ru(bpy)32+ ECL is used as a detection method for the determination of oxalate and a variety of amine-containing analytes without derivatization in flowing streams such as flow injection and HPLC. When the ECL format is used as a detector for HPLC, unstable post-column reagent addition can often be eliminated and, the problems of both sample dilution and band broadening can be avoided because the Ru(bpy)33+ species are generatedin situ in the reaction/observation flow cell. Since NADH is sensitively detected with the Ru(bpy)32+ ECL, many clinically important analytes can be detected by coupling them to dehydrogenase enzymes that utilize β-nicotinamide adenine cofactors to convert NAD+ to NADH. Ru(bpy)32+-derivatives are used as CL labels for immunoassay and PCR assay with Ru(bpy)32+/tripropylamine ECL system. The Ru(bpy)32+ ECL label can be sensitively determined at subpicomolar concentrations, along with an extremely wide dynamic range of greater than six orders of magnitude. Furthermore, it can eliminate disposal and lifetime problems inherent in radio immunoassays. In this paper, basic principles of the Ru(bpy)32+ ECL are discussed. In addition, analytical applications of the Ru(bpy)32+ ECL are illustrated with examples.

Key words

electrogenerated Chemiluminescence Ru(bpy)32+ detector flow injection analysis HPLC biosensing immunoassay DNA probe assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. K. Campbell,Chemiluminescence: Principles and Applications in Biology and Medicine, Ellis Horwood, England, 1988, Chapter 1.Google Scholar
  2. [2]
    L. J. Kricka, G. H. G. Thorpe,Analyst 1983,108, 1274.Google Scholar
  3. [3]
    M. L. Grayeski,Anal. Chem. 1987,59, 1243A.Google Scholar
  4. [4]
    A. Townshend,Analyst 1990,115, 495.Google Scholar
  5. [5]
    T. A. Nieman, in:Chemiluminescence and Photochemical Reaction Detection in Chromatography (J. W. Briks, ed.), VCH, New York, 1989, Chapter 4.Google Scholar
  6. [6]
    T. A. Nieman, in:Luminescence Techniques in Chemical and Biochemical Analysis (W. R. G. Baeyens, D. De Keukeleire, K. Korkidis, eds.), Marcel Dekker, New York, 1991, Chapter 17.Google Scholar
  7. [7]
    T. A. Nieman, in:Encyclopedia of Analytical Science, Academic Press, New York, 1994 (Chemiluminescence, (a) Overview of Techniques, (b) Liquid Phase Chemiluminescence).Google Scholar
  8. [8]
    A. W. Knight, G. M. Greenway,Analyst 1994,119, 879.Google Scholar
  9. [9]
    A. Juris, B. Balzani, E Barigelletti, S. Campagna, P. Belser, A. VonZelewsky,Coord. Chem. Rev. 1988,84, 85.Google Scholar
  10. [10]
    D. M. Hercules, F. E. Lytle,J. Am. Chem. Soc. 1966,88, 4745.Google Scholar
  11. [11]
    N. E. Tokel, A. J. Bard,J. Am. Chem. Soc. 1972,94, 2862.Google Scholar
  12. [12]
    N. E. Tokel-Tokvorya, R. E. Hemingway, A. J. Bard,J. Am. Chem. Soc. 1973,95, 6582.Google Scholar
  13. [13]
    I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1981,103, 512.Google Scholar
  14. [14]
    D. M. Hercules, F. E. Lytle,Photochem. Photobiol. 1971,13, 123.Google Scholar
  15. [15]
    J. B. Noffsinger, N. D. Danielson,Anal. Chem. 1987,59, 865.Google Scholar
  16. [16]
    K. Uchikura, M. Kirisawa,Anal. Sci. 1991,7, 803.Google Scholar
  17. [17]
    L. He, K. A. Cox, N. D. Danielson,Anal. Lett. 1990,23, 195.Google Scholar
  18. [18]
    S. N. Brune, D. R. Bobbitt,Talanta 1991,38, 419.Google Scholar
  19. [19]
    S. N. Brune, D. R. Bobbitt,Anal. Chem. 1992,64, 166.Google Scholar
  20. [20]
    K. Uchikura, M. Kirisawa,Chem. Lett. 1991, 1373.Google Scholar
  21. [21]
    T. M. Downey, T. A. Nieman,Anal. Chem. 1992,64, 261.PubMedGoogle Scholar
  22. [22]
    H. S. White, A. J. Bard,J. Am. Chem. Soc. 1982,104, 6891.Google Scholar
  23. [23]
    J. K. Leland, M. J. Powell,J. Electrochem. Soc. 1990,137, 3127.Google Scholar
  24. [24]
    J. Gonzales-Velasco, I. Rubinstein, R. J. Crutchley, A. B. P. Lever, A. J. Bard,Inorg. Chem. 1983,22, 822.Google Scholar
  25. [25]
    J. Gonzales-Velasco,J. Phys. Chem. 1988,92, 2202.Google Scholar
  26. [26]
    S. Yamazaki-Nishida, Y. Harima, K. Yamashita,J. Electroanal. Chem. Interfacial Electrochem. 1990,283, 455.Google Scholar
  27. [27]
    K. Yamashita, S. Yamazaki-Nishida, Y. Harima, A. Sewaga,Anal. Chem. 1991,63, 872.Google Scholar
  28. [28]
    P. M. Block, P. S. Cartwright, H. P. J. M. Decker, R. D. Gillard,J. Chem. Soc. Chem. Commun. 1987,1232.Google Scholar
  29. [29]
    P. McCord, A. J. Bard,J. Electroanal. Chem. 1991,318, 91.Google Scholar
  30. [30]
    J. K. Leland,Unpublished Result, IGEN Inc.Google Scholar
  31. [31]
    C. R. Martin, T. A. Rhoades, J. A. Ferguson,Anal. Chem. 1982,54, 1639.Google Scholar
  32. [32]
    R. B. Moore III, C. R. Martin,Anal. Chem. 1986,58, 2570.Google Scholar
  33. [33]
    R. B. Moore III, C. R. Martin,Macromolecules 1988,21, 1334.Google Scholar
  34. [34]
    J. A. Cox, T. Gray, B. K. Das,J. Electroanal. Chem. 1988,247, 315.Google Scholar
  35. [35]
    K. A. Striebel, G. G. Scherer, O. Haas,J. Electroanal Chem. 1991,304, 289.Google Scholar
  36. [36]
    N. Oyama, F. C. Anson,J. Electrochem. Soc. 1980,127, 247.Google Scholar
  37. [37]
    I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1980,102, 6641.Google Scholar
  38. [38]
    I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1981,103, 5007.Google Scholar
  39. [39]
    H. S. White, J. Leddy, A. J. Bard,J. Am. Chem. Soc. 1982,104, 4811.Google Scholar
  40. [40]
    C. R. Martin, I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1982,104, 4817.Google Scholar
  41. [41]
    J. Leddy, A. J. Bard,J. Electroanal. Chem. 1985,189, 203.Google Scholar
  42. [42]
    W. J. Vining, T. J. Meyer,J. Electroanal. Chem. 1987,237, 191.Google Scholar
  43. [43]
    A. F. Martin, T. A. Nieman,Anal. Chim. Acta 1993,281, 475.Google Scholar
  44. [44]
    N. Egashira, H. Kumasako, K. Ohga,Anal. Sci. 1990,6, 903.Google Scholar
  45. [45]
    H. D. Abruña, A. J. Bard,J. Am. Chem. Soc. 1982,104, 2641.Google Scholar
  46. [46]
    C. J. Zhong, M. D. Porter,Anal. Chem. 1995,67, 709A.Google Scholar
  47. [47]
    T. E. Mallouk, D. J. Harrison (eds.),Interfacial Design and Chemical Sensing, ACS Symposium Series, American Chemical Society, Washington, DC, 1994.Google Scholar
  48. [48]
    A. Ulman,Introduction to Thin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, Boston, 1991.Google Scholar
  49. [49]
    X. Zhang, A. J. Bard,J. Phys. Chem. 1988,92, 5566.Google Scholar
  50. [50]
    C. J. Miller, P. McCord, A. J. Bard,Langmuir 1991,7, 2781.Google Scholar
  51. [51]
    Y. S. Obeng, A. J. Bard,Langmuir 1991,7, 191.Google Scholar
  52. [52]
    W. A. Jackson, D. R. Bobbitt,Microchem. J. 1994,49, 99.Google Scholar
  53. [53]
    Y. Sato, K. Uosaki,J. Electroanal. Chem. 1995,384, 57.Google Scholar
  54. [54]
    I. Rubinstein, C. R. Martin, A. J. Bard,Anal. Chem. 1983,55, 1580.PubMedGoogle Scholar
  55. [55]
    D. Ege, W. G. Becker, A. J. Bard,Anal. Chem. 1984,56, 2413.PubMedGoogle Scholar
  56. [56]
    G. F. Blackburn, H. P. Shah, J. H. Kenten, J. Leland, R. A. Kamin, J. Link, J. Peterman, M. J. Powell, A. Shah, D. B. Talley, S. K. Tyagi, E. Wilkins, T. G. Wu, R. J. Massey,Clin. Chem. 1991,37, 1534.PubMedGoogle Scholar
  57. [57]
    L. S. Kuhn, A. Weber, S. G. Weber,Anal. Chem. 1990,62, 1613.Google Scholar
  58. [58]
    J. Preston, T. A. Nieman,Anal. Chem. 1996,68, 966.Google Scholar
  59. [59]
    G. P. Jirka, T. A. Nieman,Mikrochim. Acta 1994,113, 339.Google Scholar
  60. [60]
    A. W. Knight, G. M. Greenway, E. D. Chesmore,Anal. Proc. 1995,32, 125.Google Scholar
  61. [61]
    W. Y. Lee, T. A. Nieman,Anal. Chem. 1995,67, 1789.Google Scholar
  62. [62]
    N. W. Barnett, T. A. Bowser, R. A. Russel,Anal. Proc. 32, 57.Google Scholar
  63. [63]
    N. W. Barnett, T. A. Bowser, R. D. Gerardi, B. Smith,Anal. Chim. Acta 1996,309, 309.Google Scholar
  64. [64]
    L. L. Shultz, J. S. Stoyanoff, T. A. Nieman,Anal. Chem. 1996,68, 349.Google Scholar
  65. [65]
    W. A. Jackson, D. R. Bobbitt,Anal. Chim. Acta 1994,285, 309.Google Scholar
  66. [66]
    W. Y. Lee, T. A. Nieman,J. Chromatogr. A. 1994,659, 111.Google Scholar
  67. [67]
    N. D. Danielson, L. He, J. B. Noffsinger, L. Trelli,J. Pharm. Biomed. 1989,7, 1281.Google Scholar
  68. [68]
    J. A. Holeman, N. D. Danielson,Anal. Chim. Acta 1993,227, 55.Google Scholar
  69. [69]
    G. M. Greenway, A. W. Knight, P. J. Knight,Analyst 1995,120, 2549.Google Scholar
  70. [70]
    A. W. Knight, G. M. Greenway,Analyst 1995,120, 2543.Google Scholar
  71. [71]
    G. M. Greenway, P. J. Knight,Anal. Proc. 1995,32, 251.Google Scholar
  72. [72]
    W. Y. Lee,Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1995.Google Scholar
  73. [73]
    W. R. Seitz, D. M. Hercules, in:Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, J. Lee, eds.), Plenum, New York, 1973, pp. 427–449.Google Scholar
  74. [74]
    D. S. Hage, in:HPLC Detector: Newer Methods (G. Patonay, ed.), VCH, New York, 1992, Chapter 3.Google Scholar
  75. [75]
    W. Y. Lee, T. A. Nieman,Anal. Chim. Acta in press.Google Scholar
  76. [76]
    J. B. Noffsinger, N. D. Danielson,J. Chromatogr. 1987,387, 520.Google Scholar
  77. [77]
    K. Uchikura, M. Kirisawa,Anal. Sci. 1991,7, 971.Google Scholar
  78. [78]
    M. A. Targrove, N. D. Danielson,J. Chromatogr. Sci. 1990,28, 505.Google Scholar
  79. [79]
    J. A. Holeman, N. D. Danielson,J. Chromatogr. A. 1994,679, 277.PubMedGoogle Scholar
  80. [80]
    J. A. Holeman, N. D. Danielson,J. Chromatogr. Sci. 1995,33, 297.PubMedGoogle Scholar
  81. [81]
    K. Uchikura, M. Kirisawa, A. Sugii,Anal. Sci. 1993,9, 121.Google Scholar
  82. [82]
    D. R. Skotty, T. A. Nieman,J. Chromatogr., B. Biomed. Appl. 1995,665, 27.Google Scholar
  83. [83]
    A. J. Tudos, J. J. Ozinga, H. Poppe, W. Th. Kok,Anal. Chem. 1990,62, 367.Google Scholar
  84. [84]
    D. R. Skotty, W. Y. Lee, T. A. Nieman,Anal. Chem. 1996,68, 1530.Google Scholar
  85. [85]
    A. F. Martin,Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1995.Google Scholar
  86. [86]
    K. Yokoyama, S. Sasaki, K. Ikebukuro, T. Takeuchi, I. Karube, Y. Tokitsu, Y. Masuda,Talanta 1994,31, 1035.Google Scholar
  87. [87]
    F. Jameison R. I. Sanchez, L. Dong, J. K. Leland, D. Yost, M. T. Martin,Anal. Chem. 1996,68, 1298.Google Scholar
  88. [88]
    J. H. Kenten, J. Casadei, J. Link, S. Lupold, J. Willey, M. J. Powell, A. Rees, R. J. Messey,Clin. Chem. 1991,37, 1626.PubMedGoogle Scholar
  89. [89]
    D. L. Gatto-Menking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich,Biosensors and Bioelectronics 1995,10, 501.PubMedGoogle Scholar
  90. [90]
    J. DiCesare, B. Grossman, E. Katz, E. Picozza, R. Ragusa, T. Woundenberg,Biotechniques 1993,15, 152.PubMedGoogle Scholar
  91. [91]
    X. H. Xu, H. C. Yang, T. E. Mallouck, A. J. Bard,J. Am. Chem. Soc. 1994,116, 8386.Google Scholar
  92. [92]
    X. H. Xu, A. J. Bard,J. Am. Chem. Soc. 1995,117, 2627.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Won-Yong Lee
    • 1
  1. 1.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA
  2. 2.LG Electronics Research Center, MA groupSeoulKorea

Personalised recommendations