Advertisement

Inventiones mathematicae

, Volume 120, Issue 1, pp 555–578 | Cite as

Étale Galois covers of affine smooth curves

The geometric case of a conjecture of Shafarevich On Abhyankar's conjecture
  • Florian Pop
Article

Keywords

Smooth Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Abhyankar, S.: Galois theory on the line in non-zero characteristics. Bul. AMS27 (1992) 68–131Google Scholar
  2. [B-G-R]
    Bosch, S., Güntzer, U., Remmert, R: Non-archimedean analysis. Gr. Math. Wiss., Bd. 261. Berlin Heidelberg New York: Springer 1984Google Scholar
  3. [B-S]
    Bell, J.-L., Slomson, A.-B.: Models and ultraproducts: an introduction. North Holland 1969Google Scholar
  4. [Ch]
    Chatzidakis, Z.: Model theory of profinite groups having the Iwasawa property. ManuscriptGoogle Scholar
  5. [C]
    Chevalley, C.: Introduction to the theory of algebraic functions of one variable. AMS, New York 1951Google Scholar
  6. [De]
    Deligne, P.: Le groupe fondamental de la droite projective mois trois points, Galois groups over Q. Math. Sci. Res. Inst. Publ.16 79–297, Springer 1989Google Scholar
  7. [D]
    Douady, A.: Détermination d'un groupe de Galois. C. R. Acad. Sci. Paris258 (1964) 5305–5308Google Scholar
  8. [vdD-R]
    van den Dries, L., Ribenboim, P.: Application de la théorie des modèle aux groupes de Galois de corps de fonctions. C. R. Acad. Sci. Paris288 (1979) A789-A792Google Scholar
  9. [F]
    Fresnel, J.: Geometrie Analytique Rigide. Notes, Bordeaux 1984Google Scholar
  10. [F-J]
    Fried, M., Jarden, M.: Field Arithmetic. Springer Verlag Berlin Heidelberg 1986Google Scholar
  11. [G-vdP]
    Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. LNM 817, Springer-Verlag Berlin Heidelberg New York 1980Google Scholar
  12. [G]
    Grothendieck, A.: SGA 1. Revètements Étale et Groupe Fundamental. LNM 224, Springer-Verlag Berlin Heidelberg New York 1971Google Scholar
  13. [Gu]
    Gruenberg, K. W.: Projective profinite groups. J. London Math. Soc.42 (1967) 155–165Google Scholar
  14. [H1]
    Harbater, D.: Abhyankar's conjecture on Galois groups over curves, Invent. Math.117 (1994) 1–25Google Scholar
  15. [H2]
    Harbater, D.: Fundamental groups and embedding problems in characteristicp,. Proc. of a Conf. on Inverse Galois Problem, ed M. Fried, AMS Contemp. Math. Series (to appear)Google Scholar
  16. [I]
    Iwasawa, K.: On solvable extensions of number fields. Ann. Math.58 (1953) 548–572Google Scholar
  17. [Ka]
    Kani, E.: Nonstandard Diophantine Geometry. Dissertation, Heidelberg 1978Google Scholar
  18. [Ki]
    Kiehl, R.: Der Endlichkeitssatz für eigentliche Abbildungen in der nicht-archimedischen Funktionentheorie. Invent. Math.2 (1967) 191–214Google Scholar
  19. [Ko]
    Köpf, U.: Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen. Schriftenreihe des Math. Inst. Univ. Münster, 2. Serie, Heft 7 (1974)Google Scholar
  20. [K-N]
    Krull, W., Neukirch, J.: Die Struktur der absoluten Galoisgruppe über dem KörperR(t). Math. Ann.193 (1971) 197–209Google Scholar
  21. [L]
    Lütkebohmert, W.: Riemann's existence problem for ap-adic field. Invent. math.111 (1993) 309–330Google Scholar
  22. [M-R]
    Madan, M., Rosen, M.: The automorphism group of a function field. Proceedings of AMS,115 4 (1992) 923–929Google Scholar
  23. [Ma]
    Matzat, B.-H.: Der Kenntnisstand in der Konstruktiven Galoisschen Theorie, in: Progress in Mathematics, Vol. 95, Birkhäuser Verlag Basel (1991)Google Scholar
  24. [M]
    Mel'nicov, O.V.: Projective limits of free profinite groups. Dokl. Akad. Nauk BSSR24 (1980) 968–970, 1051Google Scholar
  25. [Mu]
    Mumford, D.: An analytical construction of degenerating curves over complete local rings. Compos. Math.24 (1972) 129–174Google Scholar
  26. [N]
    Nagata, M.: Local rings. Interscience Publishers New York London 1962Google Scholar
  27. [P1]
    Pop, F.: 1/2Riemann Existence Theorem with Galois Action, in: Algebra and Number Theory, (ed) G. Frey, J. Ritter: de Gruyter Proceedings in Mathematics, Berlin New York 1994Google Scholar
  28. [P2]
    Pop, F.: The geometric case of a conjecture of Shafarevich. Heidelberg-Mannheim, Preprint series Arithmetik, N0 8, Heidelberg 1993Google Scholar
  29. [Po]
    Popp, H.: Fundamentalgruppen algebraischer Mannigfaltigkeiten. LNM 176, Springer-Verlag Berlin-Heidelberg-New York 1970Google Scholar
  30. [R1]
    Raynaud, M.: Géométrie analytique rigide d'apres Tate, Kiehl, ..., Mémoire de Soc. Math. de France,39–40 (1974) 319–327Google Scholar
  31. [R2]
    Raynaud, M.: Revetements de la droite affine en caractéristiquep>0 et conjecture d'Abhyankar. Invent. Math.116 (1994) 425–462Google Scholar
  32. [R-R]
    Robinson, A., Roquette, P.: On the finiteness theorem of Siegel and Mahler concerning diophantine equations. J. Number Theory7 (1975) 121–176Google Scholar
  33. [R]
    Roquette, P.: Some tendences in contemporary algebra, in: Perspectives in Mathematics. Anniversary of Oberwolfach 1984, Basel 1984, 393–422Google Scholar
  34. [S1]
    Serre, J.-P.: Cohomologie galoisienne. LNM 5, Springer Verlag 1973Google Scholar
  35. [S2]
    Serre, J.-P.: Revetements de courbes algébriques. Sém. Bourbaki, Vol. 1991/92, Exp.749, 167–182Google Scholar
  36. [S3]
    Serre, J.-P.: Topics in Galois Theory. Research notes in Math., Jones and Bartlett 1992Google Scholar
  37. [T]
    Tate, J.: Rigid analytical spaces. Invent. Math.12 (1971) 257–289Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Florian Pop
    • 1
  1. 1.Mathematisches InstitutHeidelbergGermany

Personalised recommendations