Advertisement

Inventiones mathematicae

, Volume 120, Issue 1, pp 379–408 | Cite as

Kac-Moody groups and integrability of soliton equations

  • Boris Feigin
  • Edward Frenkel
Article

Summary

A new approach to integrability of affine Toda field theories and closely related to them KdV hierarchies is proposed. The flows of a hierarchy are explicity identified with infinitesimal action of the principal abelian subalgebra of the corresponding affine Kac-Moody algebra on a homogeneous space.

Keywords

Soliton Field Theory Homogeneous Space Soliton Equation Abelian Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB]
    M.R. Adams, M.J. Bergvelt: The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras. Comm. Math. Phys.154, 265–305 (1993)Google Scholar
  2. [BB]
    O. Babelon, D. Bernard: Affine solitons: a relation between tau functions, dressing and Bäcklund transformations. Int. J. Mod. Phys.A8, 507–543 (1993)Google Scholar
  3. [BGG]
    I.N. Bernstein, I.M. Gelfand, S.I. Gelfand: Differential operators on the basic affine space and a study of g-modules. In: I.M. Gelfand (ed.) Representations of Lie groups, Budapest 1971, pp. 21–64, London: Adam Hilder 1975Google Scholar
  4. [B]
    R. Bott: Homogeneous vector bundles. Ann. Math.66, 203–248 (1957)Google Scholar
  5. [BMP]
    P. Bouwknegt, J. McCarthy, K. Pilch: Quantum group structure in the Fock space resolutions ofSL(n) representations. Comm. Math. Phys.131, 125–156 (1990)Google Scholar
  6. [BDHM]
    N.J. Burroughs, M.F. de Groot, T.J. Hollowood, J.L. Miramontes: Generalized Drinfeld-Sokolov hierarchies II: The Hamiltonian structures. Comm. Math. Phys.153, 187–215 (1993)Google Scholar
  7. [C]
    I. Cherednik: Functional realizations of basic representations of factorizable Lie groups and Lie algebras. Funct. Anal. Appl.19, 193–206 (1985)Google Scholar
  8. [DJKM]
    E. Date, M. Jimbo, M. Kashiwara, T. Miwa: Transformation groups for soliton equations. In: M. Jimbo, T. Miwa (eds.) Non-linear Integrable Systems-Classical Theory and Quantum Theory, pp. 39–120, Singapore: World Scientific 1983Google Scholar
  9. [D]
    L.A. Dickey: Soliton Equations and Hamiltonian Systems. Singapore: World Scientific 1991.Google Scholar
  10. [Dr1]
    V. Drinfeld: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl.27, 68–71 (1983)Google Scholar
  11. [Dr2]
    V. Drinfeld: Quantum groups. In: A. Gleason (ed.) Proceedings of the International Congress of Mathematicians, Berkeley 1986 (vol. 1, pp. 798–820) Providence: American Mathematical Society 1987Google Scholar
  12. [DS1]
    V.G. Drinfeld, V.V. Sokolov: Equations of KdV type and simple Lie algebras. Sov. Math. Dokl.23, 457–462 (1981)Google Scholar
  13. [DS2]
    V.G. Drinfeld, V.V. Sokolov: Lie algebras and KdV type equations. J. Sov. Math.30, 1975–2035 (1985)Google Scholar
  14. [EY]
    T. Eguchi, S.-K. Yang: Deformations of conformal field theories and solition equations. Phys. Lett.B224, 373–378 (1989)Google Scholar
  15. [E]
    B. Enriquez: Nilpotent action on the KdV variables and 2-dimensional DS reduction. Theor. Math. Phys. (1994)Google Scholar
  16. [FFi]
    B. Feigin, A. Fialowski: On the cohomology of nilpotent algebras of flows. Sov. Math. Dokl.28, 178–181 (1983)Google Scholar
  17. [FF1]
    B. Feigin, E. Frenkel: Free field resolutions in affine Toda field theories. Phys. Lett.B276, 79–86 (1992)Google Scholar
  18. [FF2]
    B. Feigin, E. Frenkel: Integrals of motion and quantum groups, Yukawa Institute Preprint YITP/K-1036, September 1993, hep-th 9310022, to appear in Proceedings of the Summer SchoolIntegrable Systems and Quantum Groups, Montecatini Terme, Italy, June 1993, Lect. Notes in Math., Springer VerlagGoogle Scholar
  19. [F]
    E. Frenkel: Free field realizations in representation theory and conformal field theory, to appear in Proceedings of the International Congress of Mathematicians, Zürich, 1994Google Scholar
  20. [Fu]
    D.B. Fuchs: Cohomology of Infinite-dimensional Lie Algebras, Plenum 1988Google Scholar
  21. [GD1]
    I.M. Gelfand, L.A. Dickey: Asymptotic behavior of the resolvent of the Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Russ. Math. Surv.30(5), 77–113 (1975)Google Scholar
  22. [GD2]
    I.M. Gelfand, L.A. Dickey: A Lie algebra structure in a formal variations calculus. Funct. Anal. Appl.,10, 16–22 (1976)Google Scholar
  23. [GD3]
    I.M. Gelfand, I.Ya. Dorfman: Hamiltonian opperators and infinite-dimensional Lie algebras. Funct. Anal. Appl.15, 173–187 (1981)Google Scholar
  24. [G]
    A. Guichardet: Cohomologie des Groupes Topologiques et des Algebres de Lie, Paris: Cedic/Fernand Nathan 1980Google Scholar
  25. [HM]
    T. Hollowood, P. Mansfield: Rational conformal field theories at, and away from, criticality as Toda field theories. Phys. Lett.B226, 73–79 (1989)Google Scholar
  26. [HMi]
    T.J. Hollowood, J.L. Miramontes: Tau-functions and generalized integrable hierarchies. Comm. Math. Phys.157, 99–117 (1993)Google Scholar
  27. [K1]
    V.G. Kac: Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula. Adv. Math.30, 85–136 (1978)Google Scholar
  28. [K2]
    V.G. Kac: Infinite-dimensional Lie Algebras, 3rd Edition, Cambridge University Press 1990Google Scholar
  29. [KP]
    V.G. Kac, D.H. Peterson: Regular functions on certain infinite-dimensional groups. In: M. Artin, J. Tate (eds.) Arithmetic and Geometry (Progress in Math., vol. 36, pp. 141–166) Basel: Birkhäuser 1983Google Scholar
  30. [KW]
    V. Kac, M. Wakimoto: Exceptional hierarchies of soliton equations. Proc. Symp. Pure Math.49, 191–237 (1989)Google Scholar
  31. [Ka]
    M. Kashiwara: The flag manifold of Kac-Moody Lie algebra. Amer. J. of Math.111, 161–190 (1989)Google Scholar
  32. [KV]
    M. Kashiwara, M. Vergne: Remarque sur la covariance de certains opérateurs différentiels. Lect. Notes in Math.587, 119–137, Springer Verlag 1976Google Scholar
  33. [KL]
    D. Kazhdan, G. Lusztig: Shubert varieties and Poincaré duality. Proc. Symp. in Pure Math.36, 185–203 (1980)Google Scholar
  34. [Kol]
    B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329–387 (1963)Google Scholar
  35. [Ko2]
    B. Kostant: Verma modules and the existence of quasi-invariant differential operators. Lect. Notes in Math.466, 101–128, Springer Verlag 1974Google Scholar
  36. [KW]
    B.A. Kupershmidt, G. Wilson: Conservations laws and symmetries of generalized sine-Gordon equations. Comm. Math. Phys.81, 189–202 (1981).Google Scholar
  37. [MOP]
    A. Mikhailov, M. Olshanetsky, V. Perelomov: Two-dimensional generalized Toda lattice. Comm. Math. Phys.79, 473–488 (1981)Google Scholar
  38. [PK]
    D.H. Peterson, V.G. Kac: Infinite flag varieties and conjugacy theorems. Proc. Natl. Acad. Sci. USA80, 1778–1782 (1983)Google Scholar
  39. [PS]
    A. Pressley, G. Segal: Loop Groups, Oxford: Clarendon Press 1986Google Scholar
  40. [RW]
    A. Rocha-Caridi, N. Wallach: Projective modules over graded Lie algebras. Math. Z.180, 151–177 (1982)Google Scholar
  41. [SW]
    G. Segal, G. Wilson: Loop groups and equations of KdV type, Publ. Math. IHES63, 5–65 (1985)Google Scholar
  42. [W1]
    G. Wilson: The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras. Ergod. Th. and Dynam. Syst.1, 361–380 (1981)Google Scholar
  43. [W2]
    G. Wilson: Habillage et fonctions τ. C. R. Acad. Sc. Paris299, Seriee I, 587–590 (1984)Google Scholar
  44. [W3]
    G. Wilson: Infinite-dimensional Lie groups and algebraic geometry in soliton theory. Phil. Trans. Royal Soc. LondonA 315, 393–404 (1985)Google Scholar
  45. [Z]
    A. Zamolodchikov: Integrable field theory from conformal field theory. Adv. Stud. in Pure Math.19, 641–674 (1989)Google Scholar
  46. [Zh]
    D. Zhelobenko: The analysis of irreducibility in the class of elementary representations of a complex semi-simple Lie algebra. Sov. Math. Izv.2, 105–128 (1968)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Boris Feigin
    • 1
    • 2
  • Edward Frenkel
    • 3
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.R.I.M.S.Kyoto UniversityKyotoJapan
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations