Inventiones mathematicae

, Volume 120, Issue 1, pp 361–377 | Cite as

Hall algebras, hereditary algebras and quantum groups

  • James A. Green


Quantum Group Hall Algebra Hereditary Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs Am. Math. Soc. No. 173, 1976Google Scholar
  2. 2.
    Lusztig, G.: Introduction to Quantum Groups. Birkäuser, Boston, 1993Google Scholar
  3. 3.
    MacLane, S.: Homology, Springer, Berlin Göttingen Heidelberg, 1963Google Scholar
  4. 4.
    Ringel, C.M.: Hall algebras. In: Topics in Algebra, Banach Center Publ.26(1990) 433–447Google Scholar
  5. 5.
    Ringel, C.M.: Hall algebras and quantum groups. Invent. Math.101(1990) 583–592Google Scholar
  6. 6.
    Ringel, C.M.: From representations of quivers via Hall and Loewy algebras to quantum groups. Contemp. Math.131(1992) 381–401Google Scholar
  7. 7.
    Ringel, C.M.: Hall algebras revisited. In: Proceedings Israel Conference on Quantum deformations of algebras and their representations 1991/1992Google Scholar
  8. 8.
    Ringel, C.M.: The Hall algebra approach to quantum groups, Notas de Cursos, Escuela Latinoamericana de Matemáticas, Aportaciones Matemáticas, Sociedad Matemática Mexicana, 1993Google Scholar
  9. 9.
    Zelevinsky, A.V.: Representations of finite classical groups. Lecture Notes in Math. No. 869, Springer, Berlin Heidelberg New York 1981Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • James A. Green
    • 1
  1. 1.OxfordUK

Personalised recommendations