Advertisement

Inventiones mathematicae

, Volume 120, Issue 1, pp 317–338 | Cite as

Nondeformability of the complex hyperquadric

  • Jun-Muk Hwang
Article

Summary

We prove that the complex hyperquadric of dimension ≧3 does not allow nontrivial deformation. We study the orbit structure of certain vector fields defined on the potential deformation and deduce the nondeformability from the attracting property of these vector fields.

Keywords

Vector Field Orbit Structure Potential Deformation Nontrivial Deformation Complex Hyperquadric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    Andreotti, A., Stoll, W.: Analytic and algebraic dependence of meromorphic functions. Lect. Notes Math. vol. 234, Berlin Heidelberg New York: Springer 1971Google Scholar
  2. [BS]
    Bialynicki-Birula, A., Sommese, A.: Quotients by C* andSL(2, C) actions. Trans. A.M.S.279, 773–800 (1983)Google Scholar
  3. [F]
    Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math.44, 225–258 (1978)Google Scholar
  4. [F2]
    Fujiki, A.: On the Douady space of a compact complex space in the category C, II. Publ. RIMS, Kyoto Univ.20, 461–489 (1984)Google Scholar
  5. [K]
    Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math.3, 43–70 (1967)Google Scholar
  6. [KS]
    Kodaira, K., Spencer, D.: On deformations of complex structures II. Ann. Math.67, 403–466 (1958)Google Scholar
  7. [M]
    Mabuchi, T.: Kählerian rigidity of irreducible hermitian symmetic space. preprint (1993)Google Scholar
  8. [MT]
    Martinet, J.: Normalization des champs de vecteurs holomorphes (d'après A.-D. Brjuno). In: Seminaire Bourbaki 1980/81. Lect. Notes Math., vol. 901, pp. 55–70, Berlin Heidelberg New York: Springer 1981Google Scholar
  9. [N]
    Nakamura, I.: Threefolds homeomorphic to a hyperquadric inP 4 In: Hijikata, H., Hironaka, H., Maruyama, M., Matsumura, H., Miyanishi, M., Oda, T., Ueno, K.: Algebraic geometry and commutative algebra in honor of Nagata, vol. 1, (pp. 379–404) Tokyo: Kinokunia 1988Google Scholar
  10. [P]
    Pliss, V.: On the reduction of an analytic system of differential equations to linear form. Differential Equations Vol.1, No.2, 111–118 (1965)Google Scholar
  11. [S]
    Siu Y.-T.: Nondeformability of the complex projective space. J. reine angew. Math.399, 208–219 (1989)Google Scholar
  12. [S2]
    Siu, Y.-T.: Errata. J. reine angew. Math.431, 65–74 (1992)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Jun-Muk Hwang
    • 1
  1. 1.Department of Math.University of Notre DameNotre DameUSA

Personalised recommendations